Skip to main content

Segmentation and Assessment of Leukocytes Using Entropy-Based Procedure

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics

Abstract

Image evaluation plays a necessary dependability in medical discipline to support the sickness inspection. In this work, the assessment of White Blood Cell (WBC) is performed by using the Digital-Microscope-Pictures (DMP) of thin blood smears. In this study, a soft-computing procedure; Chaotic Firefly Algorithm and Kapur’s Entropy (CFA + KE) focused bi-level threshold is considered to improve the test picture. Further, Distance Regularized Level Set (DRLS) Segmentation is considered to mine the WBC region. Later, the mined WBC region is then evaluated with the expert’s Ground Truth (GT), and the well-known Picture-Quality-Parameters (PQP) is computed to substantiate the exactness of the proposed process. The experimental examination is implemented using the benchmark LISC images, and the results confirm that the proposed procedure helps to accomplish better values of PQP (average value >88%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhandary, A., et al.: Deep-learning framework to detect lung abnormality—a study with chest X-ray and lung CT scan images. Pattern Recogn. Lett. (2019). https://doi.org/10.1016/j.patrec.2019.11.013

    Article  Google Scholar 

  2. Fernandes, S.L., et al.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 1–12 (2019). https://doi.org/10.1007/s00521-019-04369-5

  3. Acharya, U.R., et al.: Automated detection of Alzheimer’s disease using brain MRI images—a study with various feature extraction techniques. J. Med. Syst. 43, 302 (2019). https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  4. Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 100, 101698 (2019). https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  5. Bhateja, V., Nigam, M., Bhadauria, A.S., Arya, A., Yu-Dong Zhang, Y-D.: Human visual system based optimized mathematical morphology approach for enhancement of brain MR images, J. Ambient. Intell. Humaniz. Comput. 1–9 (2019). https://doi.org/10.1007/s12652-019-01386-z

  6. Satapathy, S.C., El-Maleh, A., Bhateja, V.: Intelligent computing in multidisciplinary engineering applications. Arab. J. Sci. Eng. 43(8), 3861–3862 (2018)

    Article  Google Scholar 

  7. Dey, N., Shi, F., Rajinikanth, V.: Leukocyte nuclei segmentation using entropy function and Chan-Vese approach. Inf. Technol. Intell. Transp. Syst. 314, 255–264 (2019). https://doi.org/10.3233/978-1-61499-939-3-255

    Article  Google Scholar 

  8. Raja, N.S.M., Arunmozhi, S., Lin, H., Dey, N., Rajinikanth, V.: A study on segmentation of leukocyte image with Shannon’s entropy. Histopathol Image Anal. Med. Decis. Mak. 1–27 (2019). https://doi.org/10.4018/978-1-5225-6316-7.ch001

  9. Rezatofighi, S.H., Soltanian-Zadeh, H.: Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 35(4), 333–343 (2011)

    Article  Google Scholar 

  10. Prinyakupt, J., Pluempitiwiriyawej, C.: Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. BioMed Eng. OnLine 14, 63 (2015). https://doi.org/10.1186/s12938-015-0037-1

    Article  Google Scholar 

  11. Ali, et al.: Adam deep learning with SOM for human sentiment classification. Int. J. Ambient Comput. Intell. (IJACI) 10(3), 92–116 (2019). https://doi.org/10.4018/IJACI.2019070106

    Article  Google Scholar 

  12. Raja, N.S.M., Fernandes, S.L. Dey, N., Satapathy, S.C., Rajinikanth, V.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput. 1–12 (2018). https://doi.org/10.1007/s12652-018-0854-8

  13. Dey, N., Rajinikanth, V., Ashour, A.S., Tavares, J.M.R.S.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018). https://doi.org/10.3390/sym10020051

    Article  MATH  Google Scholar 

  14. Rajinikanth, V., Dey, N., Satapathy, S.C., Ashour, A.S.: An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur. Gener. Comput. Syst. 85, 160–172 (2018). https://doi.org/10.1016/j.future.2018.03.025

    Article  Google Scholar 

  15. LISC. http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm.  Accessed on 18 October 2019

  16. Rajinikanth, V., Satapathy, S.C.: Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab. J. Sci. Eng. 43(8), 4365–4378 (2018). https://doi.org/10.1007/s13369-017-3053-6

    Article  Google Scholar 

  17. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  18. Yang, X., Jiang, X.: A hybrid active contour model based on new edge-stop functions for image segmentation. Int. J. Ambient Comput. Intell. (IJACI) 11(1), 87–98 (2020). https://doi.org/10.4018/IJACI.2020010105

    Article  Google Scholar 

  19. Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 12 (2018). https://doi.org/10.1155/2018/3738049

    Article  MATH  Google Scholar 

  20. Lakshmi, B., Parthasarathy, S.: Human action recognition using median background and max pool convolution with nearest neighbor. Int. J. Ambient Comput. Intell. (IJACI) 10(2), 34–47 (2019). https://doi.org/10.4018/IJACI.2019040103

    Article  Google Scholar 

  21. Wang, R., Wang, G.: Web text categorization based on statistical merging algorithm in big data environment. Int. J. Ambient Comput. Intell. (IJACI) 10(3), 17–32 (2019). https://doi.org/10.4018/IJACI.2019070102

    Article  Google Scholar 

  22. Rajinikanth, V., Fernandes, S.L., Bhushan, B., Sunder, N.R.: Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set, Lecture Notes in Electrical Engineering, vol. 434, pp. 313–321 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sri Madhava Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manasi, S., Ramyaa, M., Sri Madhava Raja, N., Arunmozhi, S., Satapathy, S.C. (2021). Segmentation and Assessment of Leukocytes Using Entropy-Based Procedure. In: Satapathy, S., Zhang, YD., Bhateja, V., Majhi, R. (eds) Intelligent Data Engineering and Analytics. Advances in Intelligent Systems and Computing, vol 1177. Springer, Singapore. https://doi.org/10.1007/978-981-15-5679-1_67

Download citation

Publish with us

Policies and ethics