Abstract
In this paper, we propose the original idea for searching the best regions for watermark embedding in the uncompressed and compressed video sequences using a deep neural network. If video sequence is uncompressed, then a huge amount of information can be successfully embedded in the textural regions in each frame or 3D textural volume. The codecs, from MPEG-2 to H.265/HEVC, impose the strict restrictions on a watermarking process due to the standards to transmit any motion in a scene. The basic coding unit is a Group Of Pictures (GOP) including I-frame, P-frame/frames, and B-frame/frames. Among these types of frames, I-frame as a spatial intra-picture prediction from neighboring regions is available for watermarking process. Thus, our goal is to find such frames, which will be I-frames with a high probability, and then detect the textural regions for embedding. The task is complicated by a necessity to detect the scene changes in videos. We use non-end-to-end Siamese LiteFlowNet to detect the frames with low optical flow (non-significant background motion), high optical flow (object motion in a scene), or surveillance failure (scene change).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Favorskaya, M.N., Buryachenko, V.V.: Authentication and copyright protection of videos under transmitting specifications. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Advanced Control Systems-5, ISRL, vol. 175, pp. 119–160. Springer, Cham (2020)
Zhu, H., Liu, M., Li, Y.: The Rotation Scale Translation (RST) invariant digital image watermarking using Radon transform and complex moments. Digit. Signal Proc. 20(6), 1612–1628 (2010)
Abdelhakim, A.M., Saleh, H.I., Nassar, A.M.: A quality guaranteed robust image watermarking optimization with artificial bee colony. Expert Syst. Appl. 72, 317–326 (2017)
Kandi, H., Mishra, D., Gorthi, S.R.S.: Exploring the learning capabilities of convolutional neural networks for robust image watermarking. Comput. Secur. 65, 247–268 (2017)
Mun, S.-M., Nam, S.-H., Jang, H., Kim, D., Lee, H.-K.: Finding robust domain from attacks: a learning framework for blind watermarking. Neurocomputing 337, 191–202 (2019)
Favorskaya, M.N., Jain, L.C., Savchina, E.I.: Perceptually tuned watermarking using non-subsampled shearlet transform. In: Favorskaya M.N., Jain L.C. (eds.) Computer Vision in Control Systems-4, ISRL, vol. 136, pp. 41–69. Springer, Cham (2018)
Chen, J., Zhao, G., Salo, M., Rahtu, E., Pietikäinen, M.: Automatic dynamic texture segmentation using local descriptors and optical flow. IEEE Trans. Image Process. 22(1), 326–339 (2013)
Kaltsa, V., Avgerinakis, K., Briassouli, A., Kompatsiaris, I., Strintzis, M.G.: Dynamic texture recognition and localization in machine vision for outdoor environments. Comput. Ind. 98, 1–13 (2018)
Arashloo, S.R., Amirani, M.C., Noroozi, A.: Dynamic texture representation using a deep multi-scale convolutional network. J. Vis. Commun. Image R. 43, 89–97 (2017)
Tesfaldet, M., Marcus A. Brubaker, M.A., Derpanis, K.G.: Two-stream convolutional networks for dynamic texture synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6703–6712. Salt Lake City, UT, USA (2018)
Tu, Z., Xie, W., Zhang, D., Poppe, R., Veltkamp, R.C., Li, B., Junsong Yuan, J.: A survey of variational and CNN-based optical flow techniques. Sig. Process. Image Commun. 72, 9–24 (2019)
Hui, T.-W., Tang, X., Loy, C.-C.: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation. In: the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8981–8989. Salt Lake City, Utah, USA (2018)
Dosovitskiy, A., Fischer, P., Ilg, E., Höusser, P., Hazırbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision, pp. 2758–2766. Santiago, Chile (2015)
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470. Honolulu, HI, USA (2017)
Drone Videos DJI Mavic Pro Footage in Switzerland. https://www.kaggle.com/kmader/drone-videos. Last accessed 3 Jan 2020
Favorskaya, M., Pyataeva, A., Popov, A.: Texture analysis in watermarking paradigms. Proc. Comput. Sci. 112, 1460–1469 (2017)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Teutsch, M., Beyerer, J.: Noise resistant gradient calculation and edge detection using local binary patterns. In: Park, J.I., Kim, J. (eds.) Computer Vision—ACCV 2012 Workshops. LNCS, vol. 7728, pp. 1–14. Springer, Berlin, Heidelberg (2013)
Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012)
Middlebury Dataset. http://vision.middlebury.edu/flow/data/. Last accessed 3 Jan 2020
MPI Sintel Dataset. http://sintel.is.tue.mpg.de/downloads. Last accessed 3 Jan 2020
Acknowledgments
The reported study was funded by the Russian Fund for Basic Researches according to the research project No. 19-07-00047.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Favorskaya, M.N., Buryachenko, V.V. (2020). Detecting Relevant Regions for Watermark Embedding in Video Sequences Based on Deep Learning. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies. IDT 2020. Smart Innovation, Systems and Technologies, vol 193. Springer, Singapore. https://doi.org/10.1007/978-981-15-5925-9_11
Download citation
DOI: https://doi.org/10.1007/978-981-15-5925-9_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-5924-2
Online ISBN: 978-981-15-5925-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)