Skip to main content

Application of Hill Climbing Algorithm in Determining the Characteristic Objects Preferences Based on the Reference Set of Alternatives

  • Conference paper
  • First Online:
Intelligent Decision Technologies (IDT 2020)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 193))

Included in the following conference series:

Abstract

Random processes are a frequent issue when trying to solve problems in various areas. The randomness factor makes it difficult to clearly define the input parameters of a system in maximizing its effects. The solution to this problem may be the usage of stochastic optimization methods. In the following article, the Hill Climbing method has been used to solve the problem of optimization, which in combination with the COMET method gave satisfactory results by determining the relationship between the preference assessment of already existing alternatives to the newly determined alternatives. The motivation to conduct the study was the desire to systematize knowledge on the effective selection of input parameters for stochastic optimization methods. The proposed solution indicates how to select the grid size in an unknown problem and the step size in the Hill Climbing method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alajmi, B.N., Ahmed, K.H., Finney, S.J., Williams, B.W.: Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans. Power Electron. 26(4), 1022–1030 (2010)

    Article  Google Scholar 

  2. Bashir, Z., Wa̧tróbski, J., Rashid, T., Sałabun, W., Ali, J.: Intuitionistic-fuzzy goals in zero-sum multi criteria matrix games. Symmetry 9(8), 158 (2017)

    Google Scholar 

  3. Boender, C.G.E., De Graan, J.G., Lootsma, F.A.: Multi-criteria decision analysis with fuzzy pairwise comparisons. Fuzzy Sets Syst. 29(2), 133–143 (1989)

    Article  MathSciNet  Google Scholar 

  4. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 133(2), 227–235 (2003)

    Article  MathSciNet  Google Scholar 

  5. Faizi, S., Sałabun, W., Rashid, T., Wa̧tróbski, J., Zafar, S.: Group decision-making for hesitant fuzzy sets based on characteristic objects method. Symmetry 9(8), 136 (2017)

    Google Scholar 

  6. Guitouni, A., Martel, J.M.: Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109(2), 501–521 (1998)

    Article  Google Scholar 

  7. Goldfeld, S.M., Quandt, R.E., Trotter, H.F.: Maximization by quadratic hill-climbing. Econometrica: J. Econom. Soc. 541–551 (1966)

    Google Scholar 

  8. Gupta, M.M., Qi, J.: Theory of T-norms and fuzzy inference methods. Fuzzy Sets Syst. 40(3), 431–450 (1991)

    Article  MathSciNet  Google Scholar 

  9. Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. Eur. J. Oper. Res. 174(3), 1459–1478 (2006)

    Article  MathSciNet  Google Scholar 

  10. Łokietek, T., Jaszczak, S., Nikończuk, P.: Optimization of control system for modified configuration of a refrigeration unit. Procedia Comput. Sci. 159, 2522–2532 (2019)

    Article  Google Scholar 

  11. Nikończuk, P.: Preliminary modeling of overspray particles sedimentation at heat recovery unit in spray booth. Eksploatacja i Niezawodność 20, 387–393 (2018)

    Article  Google Scholar 

  12. Piegat, A.: Fuzzy modeling and control (Studies in Fuzziness and Soft Computing). Physica 742, (2001)

    Google Scholar 

  13. Piegat, A., Sałabun, W.: Nonlinearity of human multi-criteria in decision-making. J. Theor. Appl. Comput. Sci. 6(3), 36–49 (2012)

    Google Scholar 

  14. Prügel-Bennett, A.: When a genetic algorithm outperforms hill-climbing. Theor. Comput. Sci. 320(1), 135–153 (2004)

    Article  MathSciNet  Google Scholar 

  15. Roubens, M.: Fuzzy sets and decision analysis. Fuzzy Sets Syst. 90(2), 199–206 (1997)

    Article  MathSciNet  Google Scholar 

  16. Sałabun, W.: The Characteristic Objects Method: A New Distance-based Approach to Multicriteria Decision-making Problems. J. Multi-Criteria Decis. Anal. 22(1–2), 37–50 (2015)

    Article  Google Scholar 

  17. Sałabun, W., Palczewski, K., Wa̧tróbski, J.: Multicriteria approach to sustainable transport evaluation under incomplete knowledge: electric bikes case study. Sustainability 11(12), 3314 (2019)

    Google Scholar 

  18. Sałabun, W., Piegat, A.: Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artif. Intell. Rev. 48(4), 557–571 (2017)

    Article  Google Scholar 

  19. Sałabun, W., Ziemba, P., Wa̧tróbski, J.: The rank reversals paradox in management decisions: the comparison of the AHP and comet methods. In: International Conference on Intelligent Decision Technologies, pp. 181-191. Springer, Cham (2016)

    Google Scholar 

  20. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)

    Article  Google Scholar 

  21. Wa̧tróbski, J., Sałabun, W.: Green supplier selection framework based on multi-criteria decision-analysis approach. In: International Conference on Sustainable Design and Manufacturing, pp. 361–371. Springer, Cham (2016)

    Google Scholar 

  22. Wa̧tróbski, J., Sałabun, W.: The characteristic objects method: a new intelligent decision support tool for sustainable manufacturing. In: International Conference on Sustainable Design and Manufacturing, pp. 349–359. Springer, Cham (2016)

    Google Scholar 

  23. Wa̧tróbski, J., Sałabun, W., Karczmarczyk, A., Wolski, W.: Sustainable decision-making using the COMET method: An empirical study of the ammonium nitrate transport management. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 949–958. IEEE (2017)

    Google Scholar 

  24. Xi, B., Liu, Z., Raghavachari, M., Xia, C. H., Zhang, L.: A smart hill-climbing algorithm for application server configuration. In: Proceedings of the 13th International Conference on World Wide Web, pp. 287–296 (2004)

    Google Scholar 

  25. Xiao, W., Dunford, W.G.: A modified adaptive hill climbing MPPT method for photovoltaic power systems. In 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), vol. 3, pp. 1957-1963. IEEE (2004)

    Google Scholar 

  26. Yao, K.: Spherically invariant random processes: theory and applications. Communications. Information and Network Security, pp. 315–331. Springer, Boston, MA (2003)

    Google Scholar 

  27. Yildiz, A.R.: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. J. Mater. Process. Technol. 209(6), 2773–2780 (2009)

    Article  Google Scholar 

  28. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  29. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer Science & Business Media (2011)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Centre, Decision No. DEC-2016/23/N/HS4/01931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Więckowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Więckowski, J., Kizielewicz, B., Kołodziejczyk, J. (2020). Application of Hill Climbing Algorithm in Determining the Characteristic Objects Preferences Based on the Reference Set of Alternatives. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies. IDT 2020. Smart Innovation, Systems and Technologies, vol 193. Springer, Singapore. https://doi.org/10.1007/978-981-15-5925-9_29

Download citation

Publish with us

Policies and ethics