Skip to main content

Distance Invariant RGB-D Object Recognition Using DSMS System

  • Conference paper
  • First Online:
Machine Learning, Image Processing, Network Security and Data Sciences (MIND 2020)

Abstract

In computer vision, object recognition has gained a lot of attention due to its numerous practical usage. For real-world applications, it is necessary to consider conditions like object images are captured from multiple viewpoints, change in illumination and different distance locations of objects from the camera for better recognition. In this work, a new CVPR34K RGB-D dataset is proposed consisting of RGB-D images which are acquired from different distance location from the camera. A distance invariant RGB-D object recognition system is introduced using Depth Estimation, Scale data with Unit Depth and Multimodal Convolutional neural network with SVM (DSMS). The proposed DSMS system is divided into three parts. First, the Depth Estimation is introduced to detect distance location of acquired RGB-D object image. The second stage consists of several preprocessing operation to normalize input RGB-D data with respect to a reference distance. The final stage is to learn features from normalized RGB and depth images and performed RGB-D object recognition. The experimental results show that the DSMS method achieves comparable performance to state-of-the-art methods on the RGB-D object dataset. Effectiveness of our method is clearly observed for the cases when distance location RGB-D object image is changed in proposed CVPR34K Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Hakim, A., Farag, A.: CSIFT: a SIFT descriptor with color invariant characteristics. Comput. Vis. Pattern Recogn. 2, 1978–1983 (2006)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  3. Bo, L., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. In: CVPR (2011)

    Google Scholar 

  4. Bo, L., Ren, X., Fox, D.: Depth Kernel descriptors for object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 821–826 (2011)

    Google Scholar 

  5. Chang, C., Lin, C.: LIBSVM a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 1–39 (2011)

    Article  Google Scholar 

  6. Eitel, A., Springenberg, J., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep learning for robust RGB-D object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 681–687 (2015)

    Google Scholar 

  7. Fadnavis, S.: Image interpolation techniques in digital image processing: an overview. Int. Eng. Res. Appl. 4, 70–73 (2014). 2248-962270

    Google Scholar 

  8. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification. BJU Int. 101(1), 1396–400 (2010)

    Google Scholar 

  9. Jin, L., Gao, S., Li, Z., Tang, J.: Hand-crafted features or machine learnt features? Together they improve RGB-D object recognition. In: IEEE International Symposium on Multimedia, pp. 311–319 (2014)

    Google Scholar 

  10. Khan, W., Phaisangittisagul, E., Ali, L., Gansawat, D., Kumazawa, I.: Combining features for RGB-D object recognition. In: Electrical Engineering Congress (iEECON) International, pp. 1–5 (2017)

    Google Scholar 

  11. Krizhevsky, A., Sulskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information and Processing Systems (NIPS), vol. 60, no. 6, pp. 84–90 (2012)

    Google Scholar 

  12. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: IEEE International Conference on Robotics and Automation, pp. 1817–1824 (2011)

    Google Scholar 

  13. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  14. Pierre, F., Aujol, J.F., Bugeau, A., Steidl, G., Ta, V.T.: Variational contrast enhancement of RGB images (2015)

    Google Scholar 

  15. Rahman, M., Tan, Y., Xue, J., Lu, K.: RGB-D object recognition with multimodal deep convolutional neural networks. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 991–996 (2017)

    Google Scholar 

  16. Socher, R., Huval, B., Bhat, B., Manning, C., Ng, A.: Convolutional-recursive deep learning for 3D object classification. In: International Conference on Neural Information Processing Systems, vol. 1, pp. 656–664 (2012)

    Google Scholar 

  17. Sun, S., Zhao, X., Xu, J., Tan, M.: RGB-D object recognition based on RGBD-PCANet learning. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1075–1080 (2017)

    Google Scholar 

  18. Wang, A., Lu, J., Cai, J., Cham, T., Wang, G.: Large-margin multimodal deep learning for RGB-D object recognition. IEEE Trans. Multimed. 17(11), 1887–1898 (2015)

    Article  Google Scholar 

  19. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new image contrast enhancement algorithm using exposure fusion framework. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10425, pp. 36–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64698-5_4

    Chapter  Google Scholar 

  20. Zeiler, M.: ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701v1 [cs.LG] (2012)

  21. Zia, S., Yüksel, B., Yüret, D., Yemez, Y.: RGB-D object recognition using deep convolutional neural networks. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 887–894 (2018)

    Google Scholar 

  22. Patekar, R., Nandedkar, A.: CVPR34K RGB-D Object dataset. https://drive.google.com/file/d/1vOiBPkwoLecj0hHQMP8s1kJHQsZXQEuT/view?usp=sharing

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Patekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patekar, R., Nandedkar, A. (2020). Distance Invariant RGB-D Object Recognition Using DSMS System. In: Bhattacharjee, A., Borgohain, S., Soni, B., Verma, G., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2020. Communications in Computer and Information Science, vol 1240. Springer, Singapore. https://doi.org/10.1007/978-981-15-6315-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6315-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6314-0

  • Online ISBN: 978-981-15-6315-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics