Skip to main content

A Novel Algorithm for Salient Region Detection

  • Conference paper
  • First Online:
Machine Learning, Image Processing, Network Security and Data Sciences (MIND 2020)

Abstract

Salient region is the most prominent object in the scene which attracts to the human vision system. This paper presents a novel algorithm that is based on the separated Red, Green and Blue colour channels. Most prominent regions of all the three channels of RGB colour model are extracted using mean value of the respective channels. Pixels of extracted salient region of RGB channels are counted and then some specified rules are applied over these channels to generate final saliency map. To evaluate the performance of the proposed novel algorithm, a standard dataset MSRA-B has been used. The proposed algorithm presents better result and outperformed to the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79547-6_7

    Chapter  Google Scholar 

  2. Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1597–1604 (2009). For code and supplementary material http://infoscience.epfl.ch/record/135217

  3. Borji, A.: Exploiting local and global patch rarities for saliency detection. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR 2012, pp. 478–485. IEEE Computer Society, Washington (2012). http://dl.acm.org/citation.cfm?id=2354409.2354899

  4. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.M.: Global contrast based salient region detection. IEEE TPAMI 37(3), 569–582 (2015)

    Article  Google Scholar 

  5. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction (2013)

    Google Scholar 

  6. Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially weighted dissimilarity, pp. 473–480 (2011)

    Google Scholar 

  7. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012). https://doi.org/10.1109/TPAMI.2011.272

    Article  Google Scholar 

  8. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS 2006, pp. 545–552. MIT Press, Cambridge (2006). http://dl.acm.org/citation.cfm?id=2976456.2976525

  9. He, S., Lau, R.W.: Saliency detection with flash and no-flash image pairs. In: Proceedings of European Conference on Computer Vision, pp. 110–124 (2014)

    Google Scholar 

  10. Hou, W., Gao, X., Tao, D., Li, X.: Visual saliency detection using information divergence. Pattern Recogn. 46(10), 2658–2669 (2013). https://doi.org/10.1016/j.patcog.2013.03.008

    Article  Google Scholar 

  11. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach (2007)

    Google Scholar 

  12. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998). https://doi.org/10.1109/34.730558

    Article  Google Scholar 

  13. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing Markov chain. In: 2013 IEEE International Conference on Computer Vision, pp. 1665–1672 (2013)

    Google Scholar 

  14. Kim, J., Han, D., Tai, Y., Kim, J.: Salient region detection via high-dimensional color transform and local spatial support. IEEE Trans. Image Process. 25(1), 9–23 (2016)

    Article  MathSciNet  Google Scholar 

  15. Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: 2011 International Conference on Computer Vision, pp. 2214–2219 (2011)

    Google Scholar 

  16. Li, Z., Tang, K., Cheng, Y., Hu, Y.: Transition region-based single-object image segmentation. AEU Int. J. Electron. Commun. 68(12), 1214–1223 (2014)

    Article  Google Scholar 

  17. Murray, N., Vanrell, M., Otazu, X., Párraga, C.A.: Saliency estimation using a non-parametric low-level vision model, pp. 433–440 (2011)

    Google Scholar 

  18. Rezazadegan Tavakoli, H., Rahtu, E., Heikkilä, J.: Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 666–675. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21227-7_62

    Chapter  Google Scholar 

  19. Seo, H., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(15), 1–27 (2009)

    Google Scholar 

  20. Sikha, O., Kumar, S.S., Soman, K.: Salient region detection and object segmentation in color images using dynamic mode decomposition. J. Comput. Sci. 25, 351–366 (2018)

    Article  Google Scholar 

  21. Wang, L., Xue, J., Zheng, N., Hua, G.: Automatic salient object extraction with contextual cue. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 105–112. IEEE Computer Society, Washington (2011). https://doi.org/10.1109/ICCV.2011.6126231

  22. Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR 2012, pp. 853–860. IEEE Computer Society, Washington (2012). http://dl.acm.org/citation.cfm?id=2354409.2354676

  23. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013, pp. 1155–1162. IEEE Computer Society, Washington (2013). https://doi.org/10.1109/CVPR.2013.153

  24. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.: Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173, June 2013

    Google Scholar 

  25. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8, 32 (2008)

    Article  Google Scholar 

  26. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 2814–2821. IEEE Computer Society, Washington (2014). https://doi.org/10.1109/CVPR.2014.360

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tripathi, R.K. (2020). A Novel Algorithm for Salient Region Detection. In: Bhattacharjee, A., Borgohain, S., Soni, B., Verma, G., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2020. Communications in Computer and Information Science, vol 1241. Springer, Singapore. https://doi.org/10.1007/978-981-15-6318-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6318-8_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6317-1

  • Online ISBN: 978-981-15-6318-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics