Skip to main content

Quantitative Restrictions on Crossing Patterns

  • Chapter
  • First Online:
Beyond Planar Graphs
  • 565 Accesses

Abstract

This chapter is dedicated to beyond-planar graphs defined in terms of quantitative restrictions on the intersection pattern of edges. These classes include k-planar graph, k-quasiplanar graphs, k-gap-planar graphs, and k-locally planar graphs. The chapter reviews typical proof techniques, upper and lower bounds on the number of edges in these classes, as well as recent results on containment relations between these classes, and concludes with a collection of open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz, A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small complete graphs. In: Book of Abstracts of the 31st European Workshop on Computational Geometry (EuroCG), pp. 57–60, Ljubljana (2015)

    Google Scholar 

  2. Ábrego, B.M., Fernández-Merchant, S.: The rectilinear local crossing number of \(K_n\). J. Comb. Theory Ser. A 151, 131–145 (2017). https://doi.org/10.1016/j.jcta.2017.04.003

    Article  MATH  Google Scholar 

  3. Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discret. Comput. Geom. 41(3), 365–375 (2009). https://doi.org/10.1007/s00454-009-9143-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Ackerman, E.: A note on 1-planar graphs. Discret. Appl. Math. 175, 104–108 (2014). https://doi.org/10.1016/j.dam.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  5. Ackerman, E.: On topological graphs with at most four crossings per edge. Comput. Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574

  6. Ackerman, E., Fox, J., Pach, J., Suk, A.: On grids in topological graphs. Comput. Geom. 47(7), 710–723 (2014). https://doi.org/10.1016/j.comgeo.2014.02.003

    Article  MathSciNet  MATH  Google Scholar 

  7. Ackerman, E., Keszegh, B., Vizer, M.: On the size of planarly connected crossing graphs. J. Graph Algorithms Appl. 22(1), 11–22 (2018). https://doi.org/10.7155/jgaa.00453

    Article  MathSciNet  MATH  Google Scholar 

  8. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/j.jcta.2006.08.002

  9. Angelini, P., Bekos, M.A., Brandenburg, F.J., Da Lozzo, G., Di Battista, G., Didimo, W., Hoffmann, M., Liotta, G., Montecchiani, F., Rutter, I., Tóth, C.D.: Simple \(k\)-planar graphs are simple \((k+1)\)-quasiplanar. J. Comb. Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006

  10. Appel, A., Rohlf, F.J., Stein, A.J.: The haloed line effect for hidden line elimination. SIGGRAPH Comput. Graph. 13(2), 151–157 (1979). https://doi.org/10.1145/965103.807437

  11. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015). https://doi.org/10.7155/jgaa.00347

    Article  MathSciNet  MATH  Google Scholar 

  12. Bachmaier, C., Brandenburg, F.J., Hanauer, K., Neuwirth, D., Reislhuber, J.: NIC-planar graphs. Discret. Appl. Math. 232, 23–40 (2017). https://doi.org/10.1016/j.dam.2017.08.015

    Article  MathSciNet  MATH  Google Scholar 

  13. Bachmaier, C., Rutter, I., Stumpf, P.: 1-gap planarity of complete bipartite graphs (Poster). In: Biedl, T.C., Kerren, A. (eds.) Proceedings of 26th Symposium on Graph Drawing and Network Visualization. LNCS, vol. 11282. Springer, Cham (2018)

    Google Scholar 

  14. Bae, S.W., Baffier, J.F., Chun, J., Eades, P., Eickmeyer, K., Grilli, L., Hong, S.H., Korman, M., Montecchiani, F., Rutter, I., Tóth, C.D.: Gap-planar graphs. Theor. Comput. Sci. (2018). https://doi.org/10.1016/j.tcs.2018.05.029

    Article  MathSciNet  MATH  Google Scholar 

  15. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 22(1), 23–49 (2018). https://doi.org/10.7155/jgaa.00457

    Article  MathSciNet  MATH  Google Scholar 

  16. Barát, J., Tóth, G.: Improvements on the density of maximal 1-planar graphs. J. Graph Theory 88(1), 101–109 (2018). https://doi.org/10.1002/jgt.22187

    Article  MathSciNet  MATH  Google Scholar 

  17. Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.N.: The book thickness of 1-planar graphs is constant. Algorithmica 79(2), 444–465 (2017). https://doi.org/10.1007/s00453-016-0203-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry (SoCG). LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl, Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16. http://drops.dagstuhl.de/opus/volltexte/2017/7230

  19. Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abh. Math. Semin. Univ. Hambg. 53(1), 41–52 (1983). https://doi.org/10.1007/BF02941309

  20. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). https://doi.org/10.1016/S0022-0000(76)80045-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Borodin, O.V.: Solution of Ringel’s problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs. Diskret. Analiz 41, 12–26 (1984). (in Russian)

    MATH  Google Scholar 

  22. Borodin, O.V.: A new proof of the 6 color theorem. J. Graph Theory 19(4), 507–521 (1995). https://doi.org/10.1002/jgt.3190190406

    Article  MathSciNet  MATH  Google Scholar 

  23. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified \(O(n)\) planarity by edge addition. J. Graph Algorithms Appl. 8(3), 241–273 (2004). https://doi.org/10.7155/jgaa.00091

    Article  MathSciNet  MATH  Google Scholar 

  24. Brandenburg, F., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) Proceedings of 20th Symposium on Graph Drawing (GD). LNCS, vol. 7704, pp. 327–338. Springer (2012). https://doi.org/10.1007/978-3-642-36763-2_29

  25. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorithmica 80(1), 1–28 (2018). https://doi.org/10.1007/s00453-016-0226-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013). https://doi.org/10.1137/120872310

    Article  MathSciNet  MATH  Google Scholar 

  27. Cardinal, J., Hoffmann, M., Kusters, V., Tóth, C.D., Wettstein, M.: Arc diagrams, flip distances, and Hamiltonian triangulations. Comput. Geom. 68, 206–225 (2018). https://doi.org/10.1016/j.comgeo.2017.06.001

    Article  MathSciNet  MATH  Google Scholar 

  28. Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl. 16(2), 243–259 (2012). https://doi.org/10.7155/jgaa.00257

    Article  MathSciNet  MATH  Google Scholar 

  29. Colin de Verdière, É.: Computational topology of graphs on surfaces. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn, Chap. 23, pp. 605–636. CRC Press, Boca Raton (2017)

    Google Scholar 

  30. Colin de Verdière, É., Erickson, J.: Tightening nonsimple paths and cycles on surfaces. SIAM J. Comput. 39(8), 3784–3813 (2010). https://doi.org/10.1137/090761653

  31. Dujmović, V., Eppstein, D., Wood, D.R.: Structure of graphs with locally restricted crossings. SIAM J. Discret. Math 31(2), 805–824 (2017). https://doi.org/10.1137/16M1062879

    Article  MathSciNet  MATH  Google Scholar 

  32. Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system. Theor. Comput. Sci. 513, 65–76 (2013). https://doi.org/10.1016/j.tcs.2013.09.029

    Article  MathSciNet  MATH  Google Scholar 

  33. Eppstein, D., Gupta, S.: Crossing patterns in nonplanar road networks. In: Proceedings of 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 40:1–40:9. ACM, New York, NY (2017). https://doi.org/10.1145/3139958.3139999

  34. Eppstein, D., van Kreveld, M.J., Mumford, E., Speckmann, B.: Edges and switches, tunnels and bridges. Comput. Geom. 42(8), 790–802 (2009). https://doi.org/10.1016/j.comgeo.2008.05.005

    Article  MathSciNet  MATH  Google Scholar 

  35. Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. Comb. Probab. Comput. 23(1), 66–74 (2014). https://doi.org/10.1017/S0963548313000412

  36. Frati, F.: A lower bound on the diameter of the flip graph. Electron. J. Comb. 24(1), P1.43 (2017). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p43

  37. Fulek, R., Kynčl, J., Pálvölgyi, D.: Unified Hanani-Tutte theorem. Electron. J. Comb. 24(3), P3.18 (2017). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i3p18

  38. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007). https://doi.org/10.1007/s00453-007-0010-x

    Article  MathSciNet  MATH  Google Scholar 

  39. Hajnal, P., Igamberdiev, A., Rote, G., Schulz, A.: Saturated simple and 2-simple topological graphs with few edges. J. Graph Algorithms Appl. 22(1), 117–138 (2018). https://doi.org/10.7155/jgaa.00460

    Article  MathSciNet  MATH  Google Scholar 

  40. Hong, S., Nagamochi, H.: Re-embedding a 1-plane graph into a straight-line drawing in linear time. In: Hu, Y., Nöllenburg, M. (eds.) Proceedings of 24th Symposium on Graph Drawing and Network Visualization (GD). LNCS, vol. 9801, pp. 321–334. Springer (2016). https://doi.org/10.1007/978-3-319-50106-2_25

  41. Hong, S.H., Eades, P., Liotta, G., Poon, S.H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) Proceedings of 18th Computing and Combinatorics Conference (COCOON), pp. 335–346. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32241-9_29

  42. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974). https://doi.org/10.1145/321850.321852

    Article  MathSciNet  MATH  Google Scholar 

  43. Kaufmann, M., Pach, J., Tóth, G., Ueckerdt, T.: The number of crossings in multigraphs with no empty lens. In: Biedl, T.C., Kerren, A. (eds.) Proceedings of 26th Symposium on Graph Drawing and Network Visualization (GD). LNCS, vol. 11282, pp. 242–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_17

  44. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.2017.06.002

    Article  MathSciNet  MATH  Google Scholar 

  45. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013). https://doi.org/10.1002/jgt.21630

    Article  MathSciNet  MATH  Google Scholar 

  46. Kynčl, J., Pach, J., Radoičić, R., Tóth, G.: Saturated simple and \(k\)-simple topological graphs. Comput. Geom. 48(4), 295–310 (2015). https://doi.org/10.1016/j.comgeo.2014.10.008

    Article  MathSciNet  MATH  Google Scholar 

  47. Kynčl, J.: Enumeration of simple complete topological graphs. Eur. J. Comb. 30(7), 1676–1685 (2009). https://doi.org/10.1016/j.ejc.2009.03.005

    Article  MathSciNet  MATH  Google Scholar 

  48. Kynčl, J.: Simple realizability of complete abstract topological graphs simplified. In: Giacomo, E.D., Lubiw, A. (eds.) Proceedings of 23rd Symposium on Graph Drawing and Network Visualization (GD). LNCS, vol. 9411, pp. 309–320. Springer (2015). https://doi.org/10.1007/978-3-319-27261-0_26

  49. Kynčl, J., Valtr, P.: On edges crossing few other edges in simple topological complete graphs. Discret. Math. 309(7), 1917–1923 (2009). https://doi.org/10.1016/j.disc.2008.03.005

    Article  MathSciNet  MATH  Google Scholar 

  50. Lasoń, M., Micek, P., Pawlik, A., Walczak, B.: Coloring intersection graphs of arcwise connected sets in the plane. In: Nešetřil, J., Pellegrini, M. (eds.) Proceedings of 7th European Conference on Combinatorics, Graph Theory and Applications, pp. 299–304. Scuola Normale Superiore, Pisa (2013)

    Google Scholar 

  51. Liu, C.H., Reddy, M.M., Tóth, C.D.: Simple topological drawings of \(k\)-planar graphs. In: Book of Abstracts of the 36th European Workshop on Computational Geometry (EuroCG), pp. 80:1–80:6, Würzburg (2020)

    Google Scholar 

  52. McGuinness, S.: Colouring arcwise connected sets in the plane I. Graphs Comb. 16(4), 429–439 (2000). https://doi.org/10.1007/PL00007228

    Article  MathSciNet  MATH  Google Scholar 

  53. de Mendez, P.O., Oum, S., Wood, D.R.: Defective colouring of graphs excluding a subgraph or minor. Combinatorica 39(2), 377–410 (2019). https://doi.org/10.1007/s00493-018-3733-1

    Article  MathSciNet  MATH  Google Scholar 

  54. Pach, J., Pinchasi, R., Sharir, M., Tóth, G.: Topological graphs with no large grids. Graphs Comb. 21(3), 355–364 (2005). https://doi.org/10.1007/s00373-005-0616-1

    Article  MathSciNet  MATH  Google Scholar 

  55. Pach, J., Pinchasi, R., Tardos, G., Tóth, G.: Geometric graphs with no self-intersecting path of length three. Eur. J. Comb. 25(6), 793–811 (2004). https://doi.org/10.1016/j.ejc.2003.09.019

    Article  MathSciNet  MATH  Google Scholar 

  56. Pach, J., Radoičić, R., Tardos, G., Tóth, G.: A generalization of quasi-planarity. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, Contemporary Mathematics, vol. 342, pp. 177–183. AMS, Providence (2004)

    Chapter  Google Scholar 

  57. Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Comput. Geom. 36(4), 527–552 (2006). https://doi.org/10.1007/s00454-006-1264-9

    Article  MathSciNet  MATH  Google Scholar 

  58. Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Győri, E., Katona, G.O.H., Lovász, L., Fleiner, T. (eds.) More Sets, Graphs and Numbers: A Salute to Vera Sós and András Hajnal, pp. 285–300. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-32439-3_12

  59. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algorithmica 16(1), 111–117 (1996). https://doi.org/10.1007/BF02086610

    Article  MathSciNet  MATH  Google Scholar 

  60. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

    Article  MathSciNet  MATH  Google Scholar 

  61. Pach, J., Tóth, G.: A crossing lemma for multigraphs. Discret. Comput. Geom. 63, 918–933 (2020) https://doi.org/10.1007/s00454-018-00052-z

  62. Radermacher, M., Rutter, I.: Inserting an edge into a geometric embedding. In: Biedl, T., Kerren, A. (eds.) Proceedings of 26th Symposium on Graph Drawing and Network Visualization (GD). Springer, Cham (2018). arxiv:1807.11711

  63. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Semin. Univ. Hambg. 29(1), 107–117 (1965). https://doi.org/10.1007/BF02996313

    Article  MathSciNet  MATH  Google Scholar 

  64. Rok, A., Walczak, B.: Coloring curves that cross a fixed curve. Discret. Comput. Geom. 61(4), 830–851 (2019). https://doi.org/10.1007/s00454-018-0031-z

    Article  MathSciNet  MATH  Google Scholar 

  65. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J. Comb. DS21, 1–113 (2017). http://www.combinatorics.org/files/Surveys/ds21/ds21v3-2017.pdf. Version 3

  66. Schaefer, M.: Crossing Numbers of Graphs. Discrete Mathematics and Its Applications. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  67. Schmidt, J.M.: Mondshein sequences (a.k.a. \((2,1)\)-orders). SIAM J. Comput. 45(6), 1985–2003 (2016). https://doi.org/10.1137/15M1030030

  68. Suk, A., Walczak, B.: New bounds on the maximum number of edges in \(k\)-quasi-planar graphs. Comput. Geom. 50, 24–33 (2015). https://doi.org/10.1016/j.comgeo.2015.06.001

    Article  MathSciNet  MATH  Google Scholar 

  69. Székely, L.A.: Crossing numbers and hard Erdős problems in discrete geometry. Comb. Probab. Comput. 6(3), 353–358 (1997). https://doi.org/10.1017/S0963548397002976

    Article  MATH  Google Scholar 

  70. Tardos, G.: Construction of locally plane graphs with many edges. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 541–562. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_29

  71. Tardos, G., Tóth, G.: Crossing stars in topological graphs. SIAM J. Discret. Math. 21(3), 737–749 (2007). https://doi.org/10.1137/050623693

    Article  MathSciNet  MATH  Google Scholar 

  72. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988). https://doi.org/10.1002/jgt.3190120306

    Article  MathSciNet  MATH  Google Scholar 

  73. Valtr, P.: On the pair-crossing number. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. MSRI Publications, vol. 52, pp. 545–551. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  74. Wei-Kuan, S., Wen-Lian, H.: A new planarity test. Theor. Comput. Sci. 223(1), 179–191 (1999). https://doi.org/10.1016/S0304-3975(98)00120-0

    Article  MathSciNet  MATH  Google Scholar 

  75. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54(1), 150–168 (1932). http://www.jstor.org/stable/2371086

Download references

Acknowledgements

We thank Yusuke Suzuki for many helpful comments on an earlier version of this chapter. Work on this survey was supported in part by the NSF awards CCF-1422311, CCF-1423615, and DMS-1800734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba D. Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tóth, C.D. (2020). Quantitative Restrictions on Crossing Patterns. In: Hong, SH., Tokuyama, T. (eds) Beyond Planar Graphs. Springer, Singapore. https://doi.org/10.1007/978-981-15-6533-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6533-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6532-8

  • Online ISBN: 978-981-15-6533-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics