Skip to main content

ELM-MVD: An Extreme Learning Machine Trained Model for Malware Variants Detection

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2020)

Abstract

Malware variants are expanding at a fast pace and detecting them is a critical problem. According to surveys from McAfee, over 50% of the newly recognized malware are variants of earlier ones. Huge amount of miscellaneous malware variants compelled researchers to find a better model for detecting them. In this work, we propose an extreme learning machine trained model (ELM- MVD) for malware variants detection. We use the dataset comprising benign and malware executable names along with their features represented as a triplet of system calls. Along with that, we demonstrate that features in the form of a triplet vector are optimal while training a model. Feature reduction is done using an alternating direction method of multipliers (ADMM) technique. Finally, training is done on the ELM-MVD model and achieve 99.3% accuracy and 0.003 s detection speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.virustotal.com/.

  2. 2.

    https://github.com/pushkarkishore/NITRSCT/blob/master/data1.rar.

References

  1. Symantec, Internet security threat report (2017)

    Google Scholar 

  2. Kishore, P., Barisal, S.K., Vaish, S.: NITRSCT: a software security tool for collection and analysis of kernel calls. In: IEEE Region 10 Conference (TENCON), pp. 510–515 (2019)

    Google Scholar 

  3. Cesare, S., Xiang, Y.: Malware variant detection using similarity search over sets of control flow graphs. In: IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 181–189 (2011)

    Google Scholar 

  4. Fan, M., et al.: Android malware familial classification and representative sample selection via frequent subgraph analysis. IEEE Trans. Inf. Forensics Secur. 13(8), 1890–1905 (2018)

    Article  Google Scholar 

  5. Zhang, J., Qin, Z., Yin, H., Ou, L., Zhang, K.: A feature-hybrid malware variants detection using CNN based opcode embedding and BPNN based API embedding. Comput. Secur. 84, 376–392 (2019)

    Article  Google Scholar 

  6. Zhang, J., Qin, Z., Zhang, K., Yin, H., Zou, J.: Dalvik opcode graph based Android malware variants detection using global topology features. IEEE Access 6, 51964–61974 (2018)

    Article  Google Scholar 

  7. McLaughlin, N., et al.: Deep Android malware detection. In: Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, pp. 301–308 (2017)

    Google Scholar 

  8. Stringhiniq, G., Shen, Y., Han, Y., Zhang, X.: Marmite: spreading malicious file reputation through download graphs. In: Proceedings of the 33rd Annual Computer Security Applications Conference (AC-SAC) (2017)

    Google Scholar 

  9. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas C.: Malware detection by eating a whole EXE. Proceedings of arXiv:1710.09435 (2017)

  10. Kang, B., Yerima, S.Y., McLaughlin, K., Sezer, S.: N-opcode analysis for Android malware classification and categorization. In: Proceedings of International Conference on Cyber Security and Protection of Digital Services (Cyber Security) (2016)

    Google Scholar 

  11. Barisal, S.K., Dutta, A., Godboley, S., Sahoo, B., Mohapatra, D.P.: MC/DC guided test sequence prioritization using firefly algorithm. Evol. Intell., 1–14 (2019)

    Google Scholar 

  12. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

    Article  Google Scholar 

  13. Xu, L., Zhang, D., Alvarez, M.A., Morales, J.A., Ma, X., Cavazos, J.: Dynamic Android malware classification using graph-based representations. In: IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), pp. 220–231 (2016)

    Google Scholar 

  14. Barisal, S.K., Behera, S.S., Godboley, S., Mohapatra, D.P.: Validating object-oriented software at design phase by achieving MC/DC. Int. J. Syst. Assur. Eng. Manag. 10(4), 811–823 (2019). https://doi.org/10.1007/s13198-019-00815-8

    Article  Google Scholar 

  15. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X.Y., Wang, X.: Effective and efficient malware detection at the end host. In: USENIX Security Symposium, vol. 4, no. 1, pp. 351–366 (2009)

    Google Scholar 

  16. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  17. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernández-Navarro, F., Hervás-Martínez, C., Sanchez-Monedero, J., Gutiérrez, P.A.: MELM-GRBF: a modified version of the extreme learning machine for generalized radial basis function neural networks. Neurocomputing 74(16), 2502–2510 (2011)

    Article  Google Scholar 

  19. Zhang, J., Khan, M.F., Lin, X., Qin, Z.: An optimized positive-unlabeled learning method for detecting a large scale of malware variants. In: IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushkar Kishore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kishore, P., Barisal, S.K., Reddy, A.G., Mohapatra, D.P. (2020). ELM-MVD: An Extreme Learning Machine Trained Model for Malware Variants Detection. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Valentino, G. (eds) Advances in Computing and Data Sciences. ICACDS 2020. Communications in Computer and Information Science, vol 1244. Springer, Singapore. https://doi.org/10.1007/978-981-15-6634-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6634-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6633-2

  • Online ISBN: 978-981-15-6634-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics