Skip to main content

Agricultural Field Analysis Using Satellite Surface Reflectance Data and Machine Learning Technique

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1244))

Included in the following conference series:

Abstract

The environmental, social, and economic problems confronting agriculture today are symptoms of agricultural industrialization. In this study, the agricultural field is analyzed using satellite surface reflectance data. This technology facilitates monitoring of crop vegetation by spectral analysis of satellite images of different sites and crops which can track positive and negative dynamics of crop development. Using this analysis, the field can be categorized into different categories rating its potency to grow crops, which helps the user to get detailed information about the current condition of the field. For the analysis, we have used Landsat 8 data. We have used the Google Earth Engine to import the data from the ground station. The indices we have used for this study are Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetative Index (MSAVI) and Normalized Difference Water Index (NDWI) and average rainfall data. For clustering the data, we have implemented k-means clustering algorithm. We have collected data from over 6 years and by taking mean values we classified the agricultural fields into different categories according to their quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, C., Anderson, G.L.: mapping grain sorghum yield variability using airborne digital videography. Precis. Agric. 2, 7–23 (2000). https://doi.org/10.1023/A:1009928431735

    Article  Google Scholar 

  2. Chang, L., et al.: A review of plant spectral reflectance response to water physiological changes. Chin. J. Plant Ecol. 40(1), 80–91 (2016). https://doi.org/10.17521/cjpe.2015.0267

    Article  Google Scholar 

  3. Üstuner, M., Sanli, F.B., Abdikan, S., Esetlili, M.T., Kurucu, Y.: Crop type classification using vegetation indices of rapideye imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-7, 195–198 (2014). https://doi.org/10.5194/isprsarchives-xl-7-195-2014

  4. Burchfield, E., Nay, J.J., Gilligan, J.: Application of machine learning to the prediction of vegetation health. Int. Arch. Photogramm. Remote Sensing Spatial Inf. Sci. XLI-B2 (2016). https://doi.org/10.5194/isprsarchives-xli-b2-465-2016

  5. Han, H., Bai, J., Yan, J., Yang, H., Ma, G.: A combined drought monitoring index based on multi-sensor remote sensing data and machine learning. Geocarto Int. 1–16 (2019). https://doi.org/10.1080/10106049.2019.1633423

  6. Alexander, C.: Normalized difference spectral indices and urban land cover as indicators of land surface temperature (LST). Int. J. Appl. Earth Observ. Geoinf. 86, 102013 (2020). https://doi.org/10.1016/j.jag.2019.102013, ISSN 0303-2434

  7. Veeraswamy, G., Nagaraju, A., Balaji, E., Sridhar, Y.: land use land cover studies of using remotesensing and gis a case study in gudur area nellore district, andhrapradesh. Int. J. Res. 4 (2017)

    Google Scholar 

  8. Kobayashi, N., Tani, H., Wang, X., Sonobe, R.: Crop classification using spectral indices derived from Sentinel-2A imagery. J. Inf. Telecommun. 4(1), 67–90 (2020). https://doi.org/10.1080/24751839.2019.1694765

    Article  Google Scholar 

  9. Romero, M., Luo, Y., Su, B., Fuentes, S.: Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management, Comput. Electron. Agric. 147, 109–117 (2018). https://doi.org/10.1016/j.compag.2018.02.013, ISSN 0168-1699

  10. Schwalbert, R.A., Amado, T., Corassa, G., Pott, L.P., Prasad, P.V., Ciampitti, I.A.: Satellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. Forest Meteorol. 284, 107886 (2020). https://doi.org/10.1016/j.agrformet.2019.107886, ISSN 0168-1923

  11. Fu, W., Ma, J., Chen, P., Chen, F.: Remote sensing satellites for digital earth. In: Guo, H., Goodchild, M.F., Annoni, A. (eds.) Manual Digit. Earth, pp. 55–123. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9915-3_3

    Chapter  Google Scholar 

  12. Anyamba, A., Tucker, C.: Historical perspectives on AVHRR NDVI and vegetation drought monitoring. Remote Sensing of Drought: Innovative Monitoring Approaches (2012). https://doi.org/10.1201/b11863

  13. Brecht. Remote Sensing Indices (2018). https://medium.com/regen-network/remote-sensing-indices-389153e3d947

  14. Jena, J., Misra, S., Tripathi, K.: Normalized Difference Vegetation Index (NDVI) and its role in Agriculture (2019)

    Google Scholar 

  15. Xue, J., Baofeng, S.: Significant remote sensing vegetation indices: a review of developments and applications. J. Sensors 2017, 1–17 (2017). https://doi.org/10.1155/2017/1353691

    Article  Google Scholar 

  16. Google earth engine website. https://earthengine.google.com/

  17. Barsi, J.A., Schott, J.R., Hook, S.J., Raqueno, N.G., Markham, B.L., Radocinski, R.G.: Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing 6, 11607–11626 (2014). https://doi.org/10.3390/rs61111607

  18. Bao, W., Lianju, N., Yue, K.: Integration of unsupervised and supervised machine learning algorithms for credit risk assessment. Exp. Syst. Appl. 128, 301–315 (2019). https://doi.org/10.1016/j.eswa.2019.02.033, ISSN 0957-4174

  19. Li, Y., Wu, H.: A clustering method based on k-means algorithm. Phys. Proc. 1104–1109 (2012). https://doi.org/10.1016/j.phpro.2012.03.206

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranesh Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wyawahare, M., Kulkarni, P., Kulkarni, A., Lad, A., Majji, J., Mehta, A. (2020). Agricultural Field Analysis Using Satellite Surface Reflectance Data and Machine Learning Technique. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Valentino, G. (eds) Advances in Computing and Data Sciences. ICACDS 2020. Communications in Computer and Information Science, vol 1244. Springer, Singapore. https://doi.org/10.1007/978-981-15-6634-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6634-9_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6633-2

  • Online ISBN: 978-981-15-6634-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics