Skip to main content

Research on High Reliability Planning Method in Electric Wireless Network

  • Conference paper
  • First Online:
Big Data and Security (ICBDS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1210))

Included in the following conference series:

  • 1083 Accesses

Abstract

Aimed at the problems existing in the planning of power wireless communication, in order to better serve smart grid and carry out the application of time-sharing long-term evolution technology in power communication, a highly reliable planning method for wireless private network is proposed. It improves the survival of the user’s service by using overlapping coverage of base station signals, and the overlapping cells are merged to avoid the same frequency interference. By optimizing the deployment of the organization of the base station, in the case of the same number of base stations, the average inter station distance of overlapping coverage is increased, and the network reliability is improved on the premise of ensuring network performance. The planning scheme solves the problem of mutual interference caused by the same frequency overlapping coverage between base stations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, S.W., Chen, Y.: Research on business-oriented covering LTE power wireless private network. Electr. Power Inf. Commun. Technol. 13(4), 6–10 (2015)

    Google Scholar 

  2. Yao, J.M.: Random access technology of electric dedicated LTE network based on power priority. Autom. Electr. Power Syst. 40(10), 127–131 (2016)

    Google Scholar 

  3. Cao, J.P., Liu, J.M., Li, X.Z.: A power wireless broadband technology scheme for smart power distribution and utilization network. Autom. Electr. Power Syst. 37(11), 76–80 (2013)

    Google Scholar 

  4. Yu, J., Liu, J.S., Cai, S.L.: Performance simulation on TD-LTE electric power wireless private network. Guangdong Electr. Power 30(1), 39–45 (2017)

    Google Scholar 

  5. Cao, J.P., Liu, J.M.: A two-stage double-threshold local spectrum sensing algorithm research for the power private communication network. In: Proceedings of the CSEE, vol. 35, no. 10, pp 2471–2479 (2015)

    Google Scholar 

  6. Yan, J.M., Xu, J.B., Ni, M., et al.: Impact of communication system interruption on power system wide area protection and control system. Autom. Electr. Power Syst. 40(5), 17–24 (2016)

    Google Scholar 

  7. Sun, W., Lu, W., Li, Q.Y., et al.: Reliability confidence interval prediction for communication link of wireless sensor network in smart grid. Autom. Electr. Power Syst. 41(4), 29–34 (2017)

    Google Scholar 

  8. Han, J.H., Duan, Z.L.: Optimal base station selection based on dynamic programming for reprogramming in mine wireless network. J. Commun. 38(3), 7–15 (2017)

    Google Scholar 

  9. Hamza, A.S., Khalifa, S.S., Hamza, H.S., et al.: A survey on inter-cell interference coordination techniques in OFDMA based cellular networks. IEEE Commun. Surv. Tutor. 15(4), 1642–1670 (2013)

    Google Scholar 

  10. Bjomson, E., Zakhour, R., et al.: Cooperative multicell precoding: rare region characterization and distributed strategies with instantaneous and statistical CSI. IEEE Trans. Sig. Process. 58(8), 4298–4310 (2010)

    MATH  Google Scholar 

  11. Garcia, V., Zhou, Y., Shi, J.: Coordinated multipoint transmission in dense cellular networks with user-centric adaptive clustering. IEEE Trans. Wirel. Commun. 13(8), 4297–4308 (2014)

    Google Scholar 

  12. Shi, Y., Zhang, J., Letaief, K.B., et al.: Large-scale convex optimization for ultra-dense Cloud-RAN. IEEE Wirel. Commun. 22(3), 84–91 (2015)

    Google Scholar 

  13. George, K.: Green network planning of single frequency networks. IEEE Trans. Broadcast. 56(4), 541–550 (2010)

    Google Scholar 

  14. Chen, H., Zhong, X., Wang, J.: Optimal deployment of assisting cells for multimedia push in single frequency network. J. Commun. Netw. 19(2), 114–123 (2017)

    Google Scholar 

  15. GPP. TS 36.201 LTE physical layer: General description. 3GPP Technical Specification (2017)

    Google Scholar 

  16. Li, C., Wen, C., Bin, W., Xin, Z.: System-level simulation methodology and platform for mobile cellular systems. IEEE Commun. Mag. 49(7), 148–155 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zewei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Z., Jiang, C. (2020). Research on High Reliability Planning Method in Electric Wireless Network. In: Tian, Y., Ma, T., Khan, M. (eds) Big Data and Security. ICBDS 2019. Communications in Computer and Information Science, vol 1210. Springer, Singapore. https://doi.org/10.1007/978-981-15-7530-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7530-3_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7529-7

  • Online ISBN: 978-981-15-7530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics