Skip to main content

Image Generation from Layout via Pair-Wise RaGAN

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2020)

Abstract

Despite recent remarkable progress in image generation from layout, synthesizing vivid images with recognizable objects remains a challenging problem, object distortion and color imbalance occasionally happened in the generated images. To overcome these limitations, we propose a novel approach called Pair-wise Relativistic average Generative Adversarial Network (P-RaGAN) which includes a pair-wise relativistic average discriminator for enhancing the generative ability of network. We also introduce a consistency loss into our model to keep the consistency of original latent code and reconstructed or generated latent code for reducing the scope of solution space. A series of ablation experiments demonstrate the capability of our model in the task from layout to image on the complicated COCO-stuff and Visual Genome datasets. Extensive experimental results show that our model outperforms the state-of-the-art methods.

Supported by National Natural Science Foundation of China (61972059, 61773272), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA230001), Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University (93K172016K08), Suzhou Key Industry Technology Innovation-Prospective Application Research Project SYG201807), the Priority Academic Program Development of Jiangsu Higher Education Institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, Proceedings of the International Conference Learning Representation, pp. 1–14 (2015)

    Google Scholar 

  2. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GAN. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, pp. 2642–2651 (2017)

    Google Scholar 

  3. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, Proceedings of Machine Learning Research, vol. 70 pp. 214–223, PMLR (2017)

    Google Scholar 

  5. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: Thing and stuff classes in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1209–1218 (2018)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

  8. Hinz, T., Heinrich, S., Wermter, S.: Generating multiple objects at spatially distinct locations. In: ICLR (Poster). OpenReview.net (2019)

    Google Scholar 

  9. Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical text-to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7986–7994 (2018)

    Google Scholar 

  10. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  11. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2018)

    Google Scholar 

  12. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019. OpenReview.net (2019)

    Google Scholar 

  13. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  14. Li, W., et al.: Object-driven text-to-image synthesis via adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12174–12182 (2019)

    Google Scholar 

  15. Martin, A., Lon, B.: Towards principled methods for training generative adversarial networks. In: NIPS 2016 Workshop on Adversarial Training. In Review for ICLR, vol. 2016 (2017)

    Google Scholar 

  16. Müller, A.: Integral probability metrics and their generating classes of functions. Adv. Appl. Probab. 29(2), 429–443 (1997)

    Article  MathSciNet  Google Scholar 

  17. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069 (2016)

    Google Scholar 

  18. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  19. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  20. Xu, T., et al.: ATTNGAN: fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)

    Google Scholar 

  21. Zhang, H., et al.: StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5907–5915 (2017)

    Google Scholar 

  22. Zhao, B., Meng, L., Yin, W., Sigal, L.: Image generation from layout. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8584–8593 (2019)

    Google Scholar 

  23. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  24. Huang, Z., Jiqing, W., Van Gool, L.: Manifold-valued image generation with Wasserstein generative adversarial nets. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3886–3893 (2019)

    Google Scholar 

  25. Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with external knowledge and image reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1969–1978 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, T., Liu, K., Ji, Y., Liu, C. (2020). Image Generation from Layout via Pair-Wise RaGAN. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7670-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7669-0

  • Online ISBN: 978-981-15-7670-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics