Abstract
User intent classification plays a critical role in identifying the interests of users in question-answering and spoken dialog systems. The question texts of these systems are usually short and their conveyed semantic information are frequently insufficient. Therefore, the accuracy of user intent classification related to user satisfaction may be affected. To address the problem, this paper proposes a hybrid neural network named RBERT-C for text classification to capture user intent. The network uses the Chinese pre-trained RoBERTa to initialize representation layer parameters. Then, it obtains question representations through a bidirectional transformer structure and extracts essential features using a Convolutional Neural Network after question representation modeling. The evaluation is based on the publicly available dataset ECDT containing 3736 labeled sentences. Experimental result indicates that our model RBERT-C achieves a F1 score of 0.96 and an accuracy of 0.96, outperforming a number of baseline methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jokinen, K., Mctear, M.F.: Spoken dialogue systems. Synth. Lect. Hum. Lang. Technol. 2(1), 151 (2009)
Liu, J., Pasupat, P., Wang, Y., Cyphers, S., Glass, J.: Query understanding enhanced by hierarchical parsing structures. In: IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 72–77 (2013)
Hao, T., Xie, W.X., Wu, Q.Y., Weng, H., Qu, Y.Y.: Leveraging question target word features through semantic relation expansion for answer type classification. Knowl.-Based Syst. 133, 43–52 (2017)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical, pp. 1746–1751 (2014)
Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint intent detection and slot filling. In: IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 78–83 (2013)
Liu, B., Lane, I.: Attention-based recurrent neural network models for joint intent detection and slot filling. In: INTERSPEECH, pp. 685–689 (2016)
Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society, vol. 1, p. 12 (1989)
Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Liu, Y., Ott, M., Goyal, N., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Cui, Y., Che, W., Liu, T., et al.: Pre-training with whole word masking for Chinese BERT. arXiv preprint arXiv:1906.08101 (2019)
Hao, T., Xie, W., Xu, F.: A WordNet expansion-based approach for question targets identification and classification. In: Sun, M., Liu, Z., Zhang, M., Liu, Y. (eds.) CCL/NLP-NABD -2015. LNCS (LNAI), vol. 9427, pp. 333–344. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25816-4_27
Xie, W., Gao, D., Hao, T.: A feature extraction and expansion-based approach for question target identification and classification. In: Wen, J., Nie, J., Ruan, T., Liu, Y., Qian, T. (eds.) CCIR 2017. LNCS, vol. 10390, pp. 249–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68699-8_20
Liu, J., Yang, Y., Lv, S., et al.: Attention‑based BiGRU‑CNN for Chinese question classifcation. J Ambient Intell. Hum. Comput. https://doi.org/10.1007/s12652-019-01344-9 (2019)
Johnson, R., Zhang, T.: Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 562–570 (2017)
Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with multi-task learning. arXiv preprint arXiv:1605.05101 (2016)
Ravuri, S.V., Stolcke, A.: Recurrent neural network and LSTM models for lexical utterance classification. In: INTERSPEECH-2015, pp. 135–139 (2015)
Chen, Z., Tang, Y., Zhang, Z., et al.: Sentiment-aware short text classification based on convolutional neural network and attention. In: IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1172–1179 (2019)
Pappas, N., Popescu-Belis, A.: Multilingual hierarchical attention networks for document classification. arXiv preprint arXiv:1707.00896 (2017)
Guo, D., Tur, G., Yih, W., Zweig, G.: Joint semantic utterance classification and slot filling with recursive neural networks. In: IEEE Spoken Language Technology Workshop, pp. 554–559 (2014)
Liu, B., Lane, I.: Joint online spoken language understanding and language modeling with recurrent neural networks. arXiv preprint arXiv:1609.01462 (2016)
Chen, Q., Zhuo, Z., Wang, W.: BERT for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909 (2019)
Tur, G., Hakkani-Tur, D., Heck, L.: What is left to be understood in ATIS? In: Spoken Language Technology Workshop, pp. 19–24 (2010)
Coucke, A., Saade, A., Ball, A., et al.: Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces. arXiv preprint arXiv:1805.10190 (2018)
He, C., Chen, S., Huang, S., et al.: Using convolutional neural network with BERT for intent determination. In: International Conference on Asian Language Processing (IALP), pp. 65–70 (2019)
Khalil, T., Kielczewski, K., Chouliaras, G.C., et al.: Cross-lingual intent classification in a low resource industrial setting. In: International Joint Conference on Natural Language Processing, pp. 6418–6423 (2019)
Zhang, W.-N., Chen, Z., Che, W., Hu, G., Liu, T.: The first evaluation of Chinese human computer dialogue technology. arXiv preprint arXiv:1709.10217 (2017)
Xie, W., Gao, D., Ding, R., Hao, T.: A feature-enriched method for user intent classification by leveraging semantic tag expansion. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2018. LNCS (LNAI), vol. 11109, pp. 224–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99501-4_19
Chen, S., Zheng, B., Hao, T.: Capsule-based bidirectional gated recurrent unit networks for question target classification. In: Zhang, S., Liu, T.-Y., Li, X., Guo, J., Li, C. (eds.) CCIR 2018. LNCS, vol. 11168, pp. 67–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01012-6_6
Zhao, W., Ye, J., Yang, M., et al.: Investigating capsule networks with dynamic routing for text classification. arXiv preprint arXiv:1504.00538 (2018)
Wu, Y., Schuster, M., Chen, Z., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)
Jawahar, G., Sagot, B., Seddah, D., et al.: What does BERT learn about the structure of language? In: Annual Meeting of the Association for Computational Linguistics (2019)
Acknowledgements
This work was supported in part by the National Key R&D Program of China (2018YFB1003800, 2018YFB1003805), China University Production Innovation Research Fund Project (2018A01007), Philosophy and Social science planning Project of Guangdong Province (GD18CJY05), and National Natural Science Foundation of China (61772146, 61832004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, Y., Liu, H., Wong, LP., Lee, LK., Zhang, H., Hao, T. (2020). A Hybrid Neural Network RBERT-C Based on Pre-trained RoBERTa and CNN for User Intent Classification. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_26
Download citation
DOI: https://doi.org/10.1007/978-981-15-7670-6_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-7669-0
Online ISBN: 978-981-15-7670-6
eBook Packages: Computer ScienceComputer Science (R0)