Skip to main content

Multiagent Reinforcement Learning for Combinatorial Optimization

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1265))

Included in the following conference series:

  • 1228 Accesses

Abstract

In this paper, we combine multiagent reinforcement learning (MARL) with grid-based Pareto local search for combinatorial multiobjective optimization problems (CMOPs). In the multiagent system, each agent (grid) maintains at most one solution after the MARL-guided selection for local search. MARL adaptively adjusts the selection strategy for conducting better collaborative Pareto local search. In the experimental studies, the MARL-guided grid Pareto local search (MARL-GPLS) is compared with the Pareto local search (PLS), two decomposition-based multiobjective local search approaches, a grid-based approach (\(\epsilon \)-MOEA), and one state-of-the-art hybrid approach on benchmark CMOPs. The results show that the MARL-GPLS outperforms the other six algorithms on most instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afanasyeva, A., Buzdalov, M.: Choosing best fitness function with reinforcement learning. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 2, pp. 354–357, December 2011. https://doi.org/10.1109/ICMLA.2011.163

  2. Bhowmik, P., Rakshit, P., Konar, A., Kim, E., Nagar, A.K.: DE-TDQL: an adaptive memetic algorithm. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8, June 2012. https://doi.org/10.1109/CEC.2012.6256573

  3. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C (App. Rev.) 38(2), 156–172 (2008). https://doi.org/10.1109/TSMCC.2007.913919

    Article  Google Scholar 

  4. Cai, X., Sun, H., Zhang, Q., Huang, Y.: A grid weighted sum pareto local search for combinatorial multi and many-objective optimization. IEEE Trans. Cybern. 49(9), 3586–3598 (2019). https://doi.org/10.1109/TCYB.2018.2849403

    Article  Google Scholar 

  5. Hisao, I., Tadahiko, M.: Multi-objective genetic local search algorithm. In: Fukuda, T., Furuhashi, T. (eds.) Proceedings of the 1996 International Conference on Evolutionary Computation, Nagoya, Japan, pp. 119–124. IEEE (1996)

    Google Scholar 

  6. Jaakkola, T., Jordan, M.I., Singh, S.P.: On the convergence of stochastic iterative dynamic programming algorithms. Neural Comput. 6(6), 1185–1201 (2014)

    Article  MATH  Google Scholar 

  7. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment. IEEE Trans. Evol. Comput. 6(4), 402–412 (2002). https://doi.org/10.1109/TEVC.2002.802873

    Article  Google Scholar 

  8. Juan, J.D., Zhang, Y., Enrique, A., Mark, H., Antonio, J.N.: A study of the bi-objective next release problem. Empirical Softw. Eng. 16(1), 29–60 (2011)

    Article  Google Scholar 

  9. Karafotias, G., Eiben, A.E., Hoogendoorn, M.: Generic parameter control with reinforcement learning. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1319–1326 (2014)

    Google Scholar 

  10. Ke, L., Zhang, Q., Battiti, R.: Hybridization of decomposition and local search for multiobjective optimization. IEEE Trans. Cybern. 44(10), 1808–1820 (2014). https://doi.org/10.1109/TCYB.2013.2295886

    Article  Google Scholar 

  11. Liu, H., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014). https://doi.org/10.1109/TEVC.2013.2281533

    Article  Google Scholar 

  12. Lust, T., Teghem, J.: Two-phase pareto local search for the biobjective traveling salesman problem. J. Heuristics 16(3), 475–510 (2010). https://doi.org/10.1007/s10732-009-9103-910.1007/s10732-009-9103-9

    Article  MATH  Google Scholar 

  13. Matignon, L., Laurent, G.J., Fort-Piat, N.L.: Independent reinforcement learners in cooperative Markov games: a survey regarding coordination problems. Knowl. Eng. Rev. 27(01), 1–31 (2012)

    Article  Google Scholar 

  14. Sierra, M.R., Coello, C.A.: A new multi-objective particle swarm optimizer with improved selection and diversity mechanisms (2004)

    Google Scholar 

  15. Muller, S.D., Schraudolph, N.N., Koumoutsakos, P.D.: Step size adaptation in evolution strategies using reinforcement learning. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 151–156, May 2002. https://doi.org/10.1109/CEC.2002.1006225

  16. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New York (1998)

    MATH  Google Scholar 

  17. Paquete, L.F.: Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimizations: Methods and Analysis. IOS Press, Inc., Amsterdam (2006)

    MATH  Google Scholar 

  18. Reinelt, G.: TSPLIB: traveling salesman problem library. Orsa J. Comput. 3(1), 376–384 (1991)

    Article  MATH  Google Scholar 

  19. Shim, V.A., Tan, K.C., Cheong, C.Y.: A hybrid estimation of distribution algorithm with decomposition for solving the multiobjective multiple traveling salesman problem. IEEE Trans. Syst. Man Cybern. Part C 42(5), 682–691 (2012)

    Article  Google Scholar 

  20. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  21. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)

    Article  Google Scholar 

  22. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999). https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Aeronautical Science Foundation of China under grant 20175552042, by the National Natural Science Foundation of China (NSFC) under grant 61300159, by the Natural Science Foundation of Jiangsu Province of China under grant BK20181288 and by China Postdoctoral Science Foundation under grant 2015M571751.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinye Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, Y., Sun, Q., Cai, X. (2020). Multiagent Reinforcement Learning for Combinatorial Optimization. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7670-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7669-0

  • Online ISBN: 978-981-15-7670-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics