Skip to main content

Neural Network-Based Adaptive Control for EMS Type Maglev Vehicle Systems with Time-Varying Mass

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1265))

Included in the following conference series:

  • 983 Accesses

Abstract

The Electromagnetic Suspension (EMS) type maglev vehicles suffer from various control complexities such as strong nonlinearity, open-loop instability, parameter perturbations, which make the control of magnetic levitation system (MLS) very challenging. In actual operation, ever-changing passengers will cause the mass of vehicle body to deviate from the nominal mass of the levitation controller design, which will deteriorate the controller performance significantly. Therefore, the passenger carrying capacity of the maglev vehicle is strictly restricted, which restricts the further promotion of the maglev traffic. In this paper, an airgap control strategy based on the neural network (NN) is proposed for maglev vehicles with time-varying mass. Specifically, firstly, a nonlinear controller is proposed to guarantee the asymptotic stability of the closed-loop system. Next, to tackle the unknown or time-varying mass of vehicle body, an adaptive radial basis function (RBF) NN is utilized together with the proposed nonlinear controller. The stability analysis of the overall system is provided by Lyapunov techniques without any linearization to the original nonlinear model. Finally, a series of simulation results for the maglev vehicle are included to show the feasibility and superiority of the proposed control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, H.W., Kim, K.C., Lee, J.: Review of maglev train technologies. IEEE Trans. Magn. 42(7), 1917–1925 (2006)

    Article  Google Scholar 

  2. Sun, Y., Xu, J., Qiang, H., Chen, C., Lin, G.: Fuzzy H∞ robust control for magnetic levitation system of maglev vehicles based on T-S fuzzy model: design and experiments. J. Intell. Fuzzy Syst. 36(2), 911–922 (2019)

    Article  Google Scholar 

  3. Thornton, R.D.: Efficient and affordable maglev opportunities in the United States. Proc. IEEE 97(11), 1901–1921 (2009)

    Article  Google Scholar 

  4. Boldea, I., Tutelea, L., Xu, W., et al.: Linear electric machines, drives, and MAGLEVs: an overview. IEEE Trans. Ind. Electron. 65(9), 7504–7515 (2017)

    Article  Google Scholar 

  5. MacLeod, C., Goodall, R.M.: Frequency shaping LQ control of maglev suspension systems for optimal performance with deterministic and stochastic inputs. IEE Proc.-Control Theory Appl. 143(1), 25–30 (1996)

    Article  MATH  Google Scholar 

  6. Sinha, P.K., Hadjiski, L.M., Zhou, F.B., et al.: Electromagnetic suspension: new results using neural networks. IEEE Trans. Magn. 29(6), 2971–2973 (1993)

    Article  Google Scholar 

  7. Sinha, P.K., Pechev, A.N.: Model reference adaptive control of a maglev system with stable maximum descent criterion. Automatica 35(8), 1457–1465 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, Y., Qiang, H., Mei, X., et al.: Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems. Neural Comput. Appl. 30(6), 2003–2012 (2017)

    Article  Google Scholar 

  9. Wai, R.J., Chen, M.W., Yao, J.X.: Observer-based adaptive fuzzy-neural-network control for hybrid maglev transportation system. Neurocomputing 175, 10–24 (2016)

    Article  Google Scholar 

  10. Sun, N., Fang, Y., Chen, H.: Tracking control for magnetic-suspension systems with online unknown mass identification. Control Eng. Pract. 58, 242–253 (2017)

    Article  Google Scholar 

  11. Morales, R., Feliu, V., Sira-Ramirez, H.: Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain. IEEE Trans. Control Syst. Technol. 19(4), 757–771 (2011)

    Article  MATH  Google Scholar 

  12. Zhang, M., Jing, X.: A bioinspired dynamics-based adaptive fuzzy SMC method for half-car active suspension systems with input dead zones and saturations. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/tcyb.2020.2972322

  13. Sun, Y., Xu, J., Qiang, H., Lin, G.: Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans. Ind. Electron. 66(11), 8589–8599 (2019)

    Article  Google Scholar 

  14. Kusagawa, S., Baba, J., Shutoh, K., et al.: Multipurpose design optimization of EMS-type magnetically levitated vehicle based on genetic algorithm. IEEE Trans. Appl. Supercond. 14(2), 1922–1925 (2004)

    Article  Google Scholar 

  15. Liu, C., Rong, G.: SVM α order inverse system decoupling time-varying sliding mode control of double suspension systems of machining center. China Mech. Eng. 26(5), 668–674 (2015)

    Google Scholar 

  16. Qiang, H., Li, W., Sun, Y., et al.: Levitation chassis dynamic analysis and robust position control for maglev vehicles under nonlinear periodic disturbance. J. VibroEng. 19(2), 1273–1286 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Technology R&D Program of the 13th Five-year Plan (2016YFB1200601), by the National Natural Science Foundation of China under Grant 51905380, by China Postdoctoral Science Foundation under Grant 2019M651582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yougang Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Xu, J., Zhang, W., Lin, G., Sun, N. (2020). Neural Network-Based Adaptive Control for EMS Type Maglev Vehicle Systems with Time-Varying Mass. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7670-6_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7669-0

  • Online ISBN: 978-981-15-7670-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics