Abstract
To improve the control performance of the swing angle for an anchor-hole, an extended Kalman filter-based adaptively sliding mode control with dead-zone compensator is developed, with the purpose of tracking the pre-set swing angle of an anchor-hole driller as soon as possible without steady-state error. Taking the load disturbance and the dead-zone with the uncertain parameters of a proportional reversing valve into consideration, the rotation part of an anchor-hole driller is modeled. Based on this, a dead-zone compensator is designed by introducing its smooth inverse model. Following that, an adaptively sliding mode controller is designed. Finally, extended Kalman filter is employed to predict the swing angle in the next control period, as well as filter the noises derived from the measurement of the swing angle. The experimental results show that the proposed controller has the capability of rapidly tracking the pre-set swing angle without overshoot and chattering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kang, H.P., Lin, J., Fan, M.J.: Investigation on support pattern of a coal mine roadway within soft rocks a case study. Int. J. Coal Geol. 140, 31–40 (2015)
He, Y., Guo, Y.N., Gong, D.W.: Asynchronous active disturbance rejection balance control for hydraulic support platforms. Control Theor. Appl. 36(1), 151–163 (2019)
Deng, W.X., Yao, J.Y., Ma, D.W.: Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation. ISA Trans. 70, 269–278 (2017)
He, S.P., Jun, S.: Finite-time sliding mode control design for a class of uncertain conic nonlinear systems. IEEE/CAA J. Automatica Sin. 4(4), 809–816 (2017)
Haris, S.Z., Irfan, K.T., Ismail, L.: Design and adaptive sliding mode control of hybrid magnetic bearings. IEEE Trans. Ind. Electron. 65(3), 2537–2547 (2018)
Liu, J.K., Sun, F.C.: Research and development on theory and algorithms of sliding-mode control. Control Theor. Appl. 24(3), 407–418 (2007)
Kang, H.-S., Lee, Y., Hyun, C.-H., et al.: Design of sliding-mode control based on fuzzy disturbance observer for minimization of switching gain and chattering. Soft Comput. 19(4), 851–858 (2014). https://doi.org/10.1007/s00500-014-1412-8
Palli, G., Strano, S., Terzo, M.: Sliding-mode observers for state and disturbance estimation in electro-hydraulic systems. Soft Comput. 74, 58–70 (2018)
Hui, Y.X., Chen, Z.H., Yuan, Y.B., et al.: Design of fuzzy sliding-mode controller for hydraulic turbine regulating system via input state feedback linearization method. Energy 93, 173–187 (2015)
Cerman, O., Hus̆ek, P.: Adaptive fuzzy sliding-mode control for electro-hydraulic servo mechanism. Expert Syst. Appl. 39(11), 10269–10277 (2012)
Deng, H., Luo, J.H., Duan, X.G., et al.: Adaptive inverse control for gripper rotating system in heavy-duty manipulators with unknown dead-zones. IEEE Trans. Ind. Electron. 64(10), 7952–7961 (2017)
Hu, C.X., Yao, B., Wang, Q.F.: Performance-oriented adaptive robust control of a class of nonlinear systems preceded by unknown dead-zone with comparative experimental results. IEEE/ASME Trans. Mechatron. 18(1), 178–189 (2013)
Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51(3), 504–511 (2006)
Lu, X., Wang, L.L., Wang, H.X., et al.: Kalman filtering for felayed singular systems with multiplicative noise. IEEE/CAA J. Autom. Sin. 3(1), 51–58 (2016)
Zhang, Y.L., Xu, Q.S.: Adaptive sliding mode control with parameter estimation and Kalman filter for precision motion control of a piezo-driven microgripper. IEEE Trans. Control Syst. Technol. 25(2), 728–735 (2017)
Rajabi, N., Abolmasoumi, A.H., Soleymani, M.: Sliding-mode trajectory tracking control of a ball-screw-driven shake table based on online state estimations using EKF/UKF. Struct. Control Health Monit. 25(5), 1–13 (2017)
He, Y.D., Wang, J.Z., Hao, R.J.: Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection. J. Syst. Sci. Complexity 28(2), 341–359 (2014). https://doi.org/10.1007/s11424-014-2243-5
Merritt, H.E.: Hydraulic Control System. Wiley, New York (1967)
Guo, Y.N., Cheng, W.D., Gong, W., et al.: Adaptively robust rotary speed control of an anchor-hole driller under varied surrounding rock environments. Control Eng. Pract. 86, 24–36 (2019)
Acknowledgment
This work was supported by the National Natural Science Foundation of China under Grant 61973305, and the Future Scientists Program of China University of Mining and Technology under Grant 2020WLKXJ029.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, Z., Guo, YN., Lu, XW., Gong, DW., Zhang, Y. (2020). Extended Kalman Filter-Based Adaptively Sliding Mode Control with Dead-Zone Compensator for an Anchor-Hole Driller. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_4
Download citation
DOI: https://doi.org/10.1007/978-981-15-7670-6_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-7669-0
Online ISBN: 978-981-15-7670-6
eBook Packages: Computer ScienceComputer Science (R0)