Skip to main content

Generalized Locally-Linear Embedding: A Neural Network Implementation

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1265))

Included in the following conference series:

  • 1070 Accesses

Abstract

Locally-linear embedding (LLE) is a prominent dimension reduction method by exploiting the local symmetries of linear reconstructions. Recently, auto-encoders have achieved great success in learning data representation via the deep neural networks (DNN). It is interesting to get the best of both worlds by implementing LLE with DNN. To this end, we introduce an extra fully-connected layer whose weight works as a reconstruction coefficient (i.e., relation among the samples). Consequently, the latent representation can well preserve the neighborhood structure. Experiments on dimension reduction and classification have validated the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burges, C.J., et al.: Dimension reduction: a guided tour. Found. Trends® Mach. Learn. 2(4), 275–365 (2010)

    Google Scholar 

  2. Charte, D., Charte, F., García, S., del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fus. 44, 78–96 (2018)

    Article  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  4. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  5. He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp. 1208–1213. IEEE (2005)

    Google Scholar 

  6. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, pp. 153–160 (2004)

    Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  8. Hou, C., Zhang, C., Wu, Y., Jiao, Y.: Stable local dimensionality reduction approaches. Pattern Recogn. 42(9), 2054–2066 (2009)

    Article  Google Scholar 

  9. Huang, J., Nie, F., Huang, H.: A new simplex sparse learning model to measure data similarity for clustering. In: IJCAI, pp. 3569–3575 (2015)

    Google Scholar 

  10. Huang, S., Kang, Z., Xu, Z.: Auto-weighted multi-view clustering via deep matrix decomposition. Pattern Recogn. 97, 107015 (2020)

    Article  Google Scholar 

  11. Ji, P., Salzmann, M., Li, H.: Efficient dense subspace clustering. In: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 461–468. IEEE (2014)

    Google Scholar 

  12. Jolliffe, I.: Principal component analysis. In: International Encyclopedia of Statistical Science, pp. 1094–1096. Springer, New York (2011). https://doi.org/10.1007/b98835

  13. Kang, Z., Lu, X., Lu, Y., Peng, C., Chen, W., Xu, Z.: Structure learning with similarity preserving. Neural Netw. 129, 138–148 (2020)

    Article  Google Scholar 

  14. Kang, Z., Pan, H., Hoi, S.C., Xu, Z.: Robust graph learning from noisy data. IEEE Trans. Cybern. 50(5), 1833–1843 (2020)

    Article  Google Scholar 

  15. Kang, Z., Peng, C., Cheng, Q.: Robust PCA via nonconvex rank approximation. In: 2015 IEEE International Conference on Data Mining, pp. 211–220. IEEE (2015)

    Google Scholar 

  16. Kang, Z., Peng, C., Cheng, Q.: Top-n recommender system via matrix completion. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 179–184. AAAI Press (2016)

    Google Scholar 

  17. Kang, Z., Peng, C., Cheng, Q.: Twin learning for similarity and clustering: a unified kernel approach. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  18. Kang, Z., Peng, C., Cheng, Q., Xu, Z.: Unified spectral clustering with optimal graph. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  19. Kang, Z., Wen, L., Chen, W., Xu, Z.: Low-rank kernel learning for graph-based clustering. Knowl. Based Syst. 163, 510–517 (2019)

    Article  Google Scholar 

  20. Kang, Z., Xu, H., Wang, B., Zhu, H., Xu, Z.: Clustering with similarity preserving. Neurocomputing 365, 211–218 (2019)

    Article  Google Scholar 

  21. Kang, Z., et al.: Partition level multiview subspace clustering. Neural Networks 122, 279–288 (2020)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Proceedings 3rd International Conference Learning Representations (2014)

    Google Scholar 

  23. Lange, S., Riedmiller, M.: Deep auto-encoder neural networks in reinforcement learning. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  24. Li, A., Chen, D., Wu, Z., Sun, G., Lin, K.: Self-supervised sparse coding scheme for image classification based on low rank representation. PLoS One 13(6), 450–462 (2018)

    Google Scholar 

  25. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  26. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  27. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  28. Nie, F., Xu, D., Tsang, I.W.H., Zhang, C.: Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans. Image Process. 19(7), 1921–1932 (2010)

    Article  MathSciNet  Google Scholar 

  29. Peng, C., Chen, C., Kang, Z., Li, J., Cheng, Q.: Res-PCA: a scalable approach to recovering low-rank matrices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7317–7325 (2019)

    Google Scholar 

  30. Peng, C., Chen, Y., Kang, Z., Chen, C., Cheng, Q.: Robust principal component analysis: a factorization-based approach with linear complexity. Inf. Sci. 513, 581–599 (2020)

    Article  MathSciNet  Google Scholar 

  31. Peng, C., Kang, Z., Cheng, Q.: A fast factorization-based approach to robust PCA. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1137–1142. IEEE (2016)

    Google Scholar 

  32. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  33. Shakhnarovich, G.: Learning task-specific similarity. Ph.D. thesis, Massachusetts Institute of Technology (2005)

    Google Scholar 

  34. Tang, C., Zhu, X., Liu, X., Li, M., Wang, P., Zhang, C., Wang, L.: Learning joint affinity graph for multi-view subspace clustering. In: IEEE Transactions on Multimedia (2018)

    Google Scholar 

  35. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  36. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Wang, R., Nie, F., Hong, R., Chang, X., Yang, X., Yu, W.: Fast and orthogonal locality preserving projections for dimensionality reduction. IEEE Trans. Image Process. 26(10), 5019–5030 (2017)

    Article  MathSciNet  Google Scholar 

  38. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487 (2016)

    Google Scholar 

  39. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  40. Zhang, C., Liu, Y., Fu, H.: Ae2-nets: autoencoder in autoencoder networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2577–2585 (2019)

    Google Scholar 

  41. Zhang, J., et al.: Self-supervised convolutional subspace clustering network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5473–5482 (2019)

    Google Scholar 

  42. Zhou, P., Hou, Y., Feng, J.: Deep adversarial subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1596–1604 (2018)

    Google Scholar 

  43. Zhou, P., Du, L., Fan, M., Shen, Y.D.: An LLE based heterogeneous metric learning for cross-media retrieval. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 64–72. SIAM (2015)

    Google Scholar 

Download references

Acknowledgments

This paper was in part supported by Grants from the Natural Science Foundation of China (No. 61806045), the National Key R&D Program of China (No. 2018YFC0807500), the Fundamental Research Fund for the Central Universities under Project ZYGX2019Z015, the Sichuan Science and Techology Program (Nos. 2020YFS0057, 2019YFG0202), the Ministry of Science and Technology of Sichuan Province Program (Nos. 2018GZDZX0048, 20ZDYF0343, 2018GZDZX0014, 2018GZDZX0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, X., Kang, Z., Tang, J., Xie, S., Su, Y. (2020). Generalized Locally-Linear Embedding: A Neural Network Implementation. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7670-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7669-0

  • Online ISBN: 978-981-15-7670-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics