Skip to main content

Localization Algorithm of Wireless Sensor Network Based on Concentric Circle Distance Calculation

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1257))

  • 1284 Accesses

Abstract

Node Localization is one of the key technology in the field of wireless sensor network (WSN) that has become a challenging research topic under the lack of distance measurement. In order to solve this problem, a localization algorithm based on concentric circle distance calculation (LA-CCDC) is proposed. The LA-CCDC takes the beacon as the center of the concentric circle, then divides the task area into concentric circles with the k communication radius of sensor, which forms concentric rings. The node located in the k hops ring intersects the concentric circle with (k − 1) r radius that forms an intersection area. This area is used to calculate the distance from the beacon to the unknown node, hyperbola is then adopted to locate the unknown node. In the application scenario with node random distribution, the simulation results show that the LA-CCDC algorithm gets the node location with low error under different node number, different beacons and different communication radius of sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta, S., Singh, M., Srivastava, S.: Wireless sensor network: a survey. Int. J. Innov. Adv. Comput. Sci. 2(4), 78–85 (2015)

    Google Scholar 

  2. Gumaida, B.F.: ELPMA: efficient localization algorithm based path planning for mobile anchor in wireless sensor network. Wirel. Pers. Commun. Int. J. 100, 721–744 (2018). https://doi.org/10.1007/s11277-018-5343-z

    Article  Google Scholar 

  3. Zhu, X., Dong, W., Renfa, L.I., et al.: Localization and nodes location-aware in Internet of Things. Scientia Sinica (Informationis) 43(10), 1265–1287 (2013)

    Article  Google Scholar 

  4. Nieoleseu, D., Nath, B.: Ad-hoc positioning systems (APS). In: Proceedings of the 2001 IEEE Global Telecommunications Conference, vol. 5, pp. 2926–2931. IEEE Communications Society, San Antonio (2001)

    Google Scholar 

  5. Patwari, N., Hero, A.O., Perkins, M., et al.: Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 51(8), 2137–2148 (2003)

    Article  Google Scholar 

  6. Girod, L., Estrin, D.: Robust range estimation using acoustic and multimodal sensing. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001), vol. 3, pp. 1312–1320. IEEE Robotics and Automation society, Maui (2001)

    Google Scholar 

  7. Lazos, L., Poovendran, R.: POPE: robust position estimation in wireless sensor networks. In: Proceedings of the 4th IEEE International Conference on Information Processing in Sensor Networks, pp. 324–331 (2005)

    Google Scholar 

  8. Niculescu, D., Nath, B.: DV based positioning in ad hoc networks. Telecommun. Syst. 22(1/4), 267–280 (2003)

    Article  Google Scholar 

  9. Shen, S., Yang, B., Qian, K., et al.: An improved amorphous localization algorithm for wireless sensor networks. In: International Conference on Networking & Network Applications. IEEE (2016)

    Google Scholar 

  10. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. 7(5), 28–34 (2000)

    Article  Google Scholar 

  11. He, T., Huang, C., Blum, B.M., et al.: Range-free localization and its impact on large scale sensor networks. ACM Trans. Embed. Comput. Syst. 4(4), 877–906 (2005)

    Article  Google Scholar 

  12. Goyat, R., Rai, M., Kumar, G., et al.: Improved DV-Hop localization scheme for randomly deployed WSNs. Int. J. Sensors Wirel. Commun. Control 10(1), 94–109 (2020)

    Article  Google Scholar 

  13. Qiao, X., Chang, F., Ling, J.: Improvement of localization algorithm for wireless sensor networks based on DV-Hop. Int. J. Online Biomed. Eng. 15(06), 53–65 (2019)

    Article  Google Scholar 

  14. Amri, S., Khelifi, F., Bradai, A., et al.: A new fuzzy logic based node localization mechanism for Wireless Sensor Networks. Future Gener. Comput. Syst. (2017). S0167739X17303886

    Google Scholar 

  15. Mass-Sanchez, J., Ruiz-Ibarra, E., Cortez-González, J., et al.: Weighted hyperbolic DV-Hop positioning node localization algorithm in WSNs. Wirel. Pers. Commun. 96, 5011–5033 (2016)

    Article  Google Scholar 

  16. Stanoev, A., Filiposka, S., In, V., et al.: Cooperative method for wireless sensor network localization. Ad Hoc Netw. 40, 61–72 (2016)

    Article  Google Scholar 

  17. Li, G., Zeng, J.: Ranging distance modified by particle swarm algorithm for WSN node localization. J. Jilin Univ. 56(231(03)), 188–194 (2018)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Yunnan Local Colleges Applied Basic Research Projects (2017FH001-059, 2018FH001-010, 2018FH001-061), National Natural Science Foundation of China (61962033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShaoJun Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, K., Pu, C., Wang, Y., Yu, S., Shen, S. (2020). Localization Algorithm of Wireless Sensor Network Based on Concentric Circle Distance Calculation. In: Zeng, J., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2020. Communications in Computer and Information Science, vol 1257. Springer, Singapore. https://doi.org/10.1007/978-981-15-7981-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7981-3_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7980-6

  • Online ISBN: 978-981-15-7981-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics