Skip to main content

Automatic Detection of Solar Radio Spectrum Based on Codebook Model

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2020)

Abstract

Space weather can affect human production and life, and solar radio burst will seriously affect space weather. Automatic detection of solar radio bursts in real time has a positive effect on space weather warning and prediction. Codebook model is used to simulate solar background radio to achieve automatic detection of solar radio bursts in this paper. Firstly, channel normalization was used to eliminate channel difference of original radio data. Then, a new automatic detection method for solar radio bursts based on codebook model was proposed to detect radio bursts. Finally, morphological processing was implemented to obtain burst parameters by detecting binary burst area. The experimental results show that the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, G.N.: The Solar Radio Bursts and Fine Structuresin Metric and Decimetric Bands. University of Chinese Academy of Sciences (2015)

    Google Scholar 

  2. Ma, L., Chen, Z., Long, X., Yan, Y.: Multimodal deep learning for solar radio burst classification. Pattern Recogn. 61(1), 573–582 (2017)

    Article  Google Scholar 

  3. Lobzin, V.V., Cairns, I.H., Robinson, P.A., et al.: Automatic recognition of type III solar radio bursts: automated radio burst identification system method and first observations. Space Weather-Int. J. Res. Appl. 7(4), S04002 (2009)

    Google Scholar 

  4. Lobzin, V.V., Cairns, I.H., Robinson, P.A., et al.: Automatic recognition of coronal type II radio bursts: the automated radio burst identification system method and first observations. Astrophys. J. Lett. 710(1), L58 (2010)

    Article  Google Scholar 

  5. Zhang, P.J., Wang, C.B., Ye, L.: A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nançay Decameter Array data. Astron. Astrophys. 618, A165 (2018)

    Article  Google Scholar 

  6. Chen, S., Long, X., Lin, M., et al.: Convolutional neural network for classification of solar radio spectrum. In: IEEE International Conference on Multimedia & Expo Workshops (2017)

    Google Scholar 

  7. Singh, D., Raja, K.S., Subramanian, P., Ramesh, R., Monstein, C.: Automated detection of solar radio bursts using a statistical method. Sol. Phys. 294(8), 1–14 (2019). https://doi.org/10.1007/s11207-019-1500-0

    Article  Google Scholar 

  8. Afandi, N.Z.M., Sabri, N.H., Umar, R., Monstein, C.: Burst-finder: burst recognition for E-CALLISTO spectra. Indian J. Phys. 94(7), 947–957 (2019). https://doi.org/10.1007/s12648-019-01551-2

    Article  Google Scholar 

  9. Du, Q.-F., Chen, C.-S., Zhang, Q.-M., Li, X., Song, Y.: A self-adaptive method for the determination of solar bursts for high-resolution solar radio spectrometer. Astrophys. Space Sci. 364(6), 1–9 (2019). https://doi.org/10.1007/s10509-019-3584-2

    Article  Google Scholar 

  10. Gao, G.N., Lin, J., Wang, M., Xie, R.X.: Research progress of type II and type III radio storms and fine structure observation of solar metric and decimetric. Prog. Astron. 30(1), 35–47 (2011)

    Google Scholar 

  11. Luo, G., Yuan, G., Li, G., Wu, H., Dong, L.: A noise reduction method for solar radio spectrum based on improved guided filter and morphological cascade. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds.) ICNC-FSKD 2019. AISC, vol. 1075, pp. 815–822. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32591-6_88

    Chapter  Google Scholar 

  12. Zhao, R.Z., Hu, Z.Y.: Wavelet NeighShrink method for eliminating image moire in solar radio bursts. Spectrosc. Spectral Anal. 27(1), 198–201 (2007)

    Google Scholar 

  13. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)

    Article  Google Scholar 

  14. Qin, Z.Y.: Research on background modeling method based on codebook learning. University of Electronic Science and Technology of China (2015)

    Google Scholar 

  15. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Electronic Industry Press, Beijing (2007)

    Google Scholar 

  16. Yuan, G., et al.: Solar radio burst automatic detection method for decimetric and metric data of YNAO. In: Cheng, X., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2019. CCIS, vol. 1058, pp. 283–294. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0118-0_22

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (Grant No. 11663007, 11703089, 41764007, 61802337, U1831201), Open Project of Key Laboratory of Celestial Structure and Evolution, Chinese Academy of Sciences (Grant No. OP201510), the Research Foundation of Yunnan Province (No. 2018FB100), the Scientific Research of Yunnan Provincial Education Department (No. 2018JS011) and the Action Plan of Yunnan University Serving for Yunnan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowu Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G. et al. (2020). Automatic Detection of Solar Radio Spectrum Based on Codebook Model. In: Zeng, J., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2020. Communications in Computer and Information Science, vol 1257. Springer, Singapore. https://doi.org/10.1007/978-981-15-7981-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7981-3_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7980-6

  • Online ISBN: 978-981-15-7981-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics