Skip to main content

Using GMOSTNet for Tree Detection Under Complex Illumination and Morphological Occlusion

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1257))

  • 1190 Accesses

Abstract

Trees are an integral part of the forestry ecosystem. In forestry work, the precise acquisition of tree morphological parameters and attributes is affected by complex illumination and tree morphology. In order to minimize a series of inestimable problems, such as yield reduction, ecological damage, and destruction, caused by inaccurate acquisition of tree location information, this paper proposes a ground tree detection method GMOSTNet. Based on the four types of tree species in the GMOST dataset and Faster R-CNN, it extracted the features of the trees, generate candidate regions, classification, and other operations. By reducing the influence of illumination and occlusion factors during experimentation, more detailed information of the input image was obtained. Meanwhile, regarding false detections caused by inappropriate approximations, the deviation and proximity of the proposal were adjusted. The experimental results showed that the AP value of the four tree species is improved after using GMOSTNet, and the overall accuracy increases from the original 87.25% to 93.25%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piiroinen, R., Fassnacht, F.E., Heiskanen, J., Maeda, E., Mack, B., Pellikka, P.: Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one class classification. Remote Sens. Environ. 218, 119–131 (2018)

    Article  Google Scholar 

  2. Aval, J., et al.: Detection of individual trees in urban alignment from airborne data and contextual information: a marked point process approach. ISPRS J. Photogramm. Remote Sens. 146, 197–210 (2018)

    Article  Google Scholar 

  3. Zhang, J., He, L., Karkee, M., Zhang, Q., Zhang, X., Gao, Z.: Branch detection for apple trees trained in fruiting wall architecture using depth features and regions-convolutional neural network (R-CNN). Comput. Electron. Agric. 155, 386–393 (2016)

    Article  Google Scholar 

  4. Duncanson, L., Dubayah, R.: Monitoring individual tree-based change with airborne lidar. Ecol. Evol. 8(10), 5079–5089 (2018)

    Article  Google Scholar 

  5. Ferraz, A., Saatchi, S., Mallet, C., Meyer, V.: Lidar detection of individual tree size in tropical forests. Remote Sens. Environ. 183, 318–333 (2016)

    Article  Google Scholar 

  6. Jeronimo, S.M., Kane, V.R., Churchill, D.J., McGaughey, R.J., Franklin, J.F.: Applying LiDAR individual tree detection to management of structurally diverse forest landscapes. J. For. 116(4), 336–346 (2018)

    Google Scholar 

  7. Kansanen, K., Vauhkonen, J., Lähivaara, T., Seppänen, A., Maltamo, M., Mehtätalo, L.: Estimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching. ISPRS J. Photogramm. Remote Sens. 152, 66–78 (2019)

    Article  Google Scholar 

  8. Dempewolf, J., Nagol, J., Hein, S., Thiel, C., Zimmermann, R.: Measurement of within-season tree height growth in a mixed forest stand using UAV imagery. Forests 8(7), 231 (2017)

    Article  Google Scholar 

  9. Goldbergs, G., Maier, S.W., Levick, S.R., Edwards, A.: Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian Savannas. Remote Sens. 10, 161 (2018)

    Article  Google Scholar 

  10. Gebreslasie, M.T., Ahmed, F.B., Van Aardt, J.A., Blakeway, F.: Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged Eucalyptus plantation forests. Int. J. Remote Sens. 32(15), 4141–4154 (2011)

    Article  Google Scholar 

  11. Gougeon, F.A., Moore, T.: Individual tree classification using MEIS-II imagery. In: 1988 Geoscience and Remote Sensing Symposium, IGARSS 1988. Remote Sensing: Moving Toward the 21st Century, International, vol. 2, p. 927 (1988)

    Google Scholar 

  12. Heinzel, J., Koch, B.: Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int. J. Appl. Earth Obs. Geoinf. 18, 101–110 (2012)

    Article  Google Scholar 

  13. Nevalainen, O., et al.: Individual tree detection and classification with UAV-Based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 9, 185 (2017)

    Article  Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NIPS 1, 91–99 (2015)

    Google Scholar 

  15. Roth, S.I., Leiterer, R., Volpi, M., Celio, E., Schaepman, M.E., Joerg, P.C.: Automated detection of individual clove trees for yield quantification in northeastern Madagascar based on multi-spectral satellite data. Remote Sens. Environ. 221, 144–156 (2019)

    Article  Google Scholar 

  16. Binkley, D., Stape, J.L., Bauerle, W.L., Ryan, M.G.: Explaining growth of individual trees: light interception and efficiency of light use by Eucalyptus at four sites in Brazil. For. Ecol. Manag. 259(9), 1704–1713 (2010)

    Article  Google Scholar 

  17. Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J., Vehmas, M.: Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens. Environ. 90(3), 319–330 (2004)

    Article  Google Scholar 

  18. Korpela, I., Anttila, P., Pitkänen, J.: The performance of a local maxima method for detecting individual tree tops in aerial photographs. Int. J. Remote Sens. 27(6), 1159–1175 (2006)

    Article  Google Scholar 

  19. Li, J., Hu, B., Noland, T.L.: Classification of tree species based on structural features derived from high density LiDAR data. Agric. For. Meteorol. 171–172, 104–114 (2013)

    Article  Google Scholar 

  20. Li, W., Dong, R., Fu, H., Yu, L.: Large-Scale oil palm tree detection from high-resolution satellite images using two-stage convolutional neural networks. Remote Sens. 11, 11 (2019)

    Article  Google Scholar 

  21. Vauhkonen, J., et al.: Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85(1), 27–40 (2011)

    Article  Google Scholar 

  22. Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C.: Repulsion loss: detecting pedestrians in a crowd. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp. 7774–7783 (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (U1809208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, Z., Feng, H., Yang, Y., Du, X., Xia, K. (2020). Using GMOSTNet for Tree Detection Under Complex Illumination and Morphological Occlusion. In: Zeng, J., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2020. Communications in Computer and Information Science, vol 1257. Springer, Singapore. https://doi.org/10.1007/978-981-15-7981-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7981-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7980-6

  • Online ISBN: 978-981-15-7981-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics