Skip to main content

Modeling and Multistability of Ion-Acoustic Waves in Titan’s Atmosphere

  • Conference paper
  • First Online:
Proceedings of the Sixth International Conference on Mathematics and Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1262))

  • 302 Accesses

Abstract

The nonlinear analysis of ion-acoustic wave (IAWs) in plasmas constituting of negative and positive ions and Maxwellian electrons is investigated under the framework of the nonlinear Schrödinger equation (NLSE). Using suitable transfiguration, the NLSE is transformed into a dynamical system (DS). To study dynamical features in the existence of an external perturbation periodic force, the DS is transformed into perturbed DS. The perturbed DS supported by the NLSE describes dynamical features such as chaos, quasiperiodicity, and multiperiodicity. The occurrence of multistability is shown for the perturbed DS supported by the NLSE. Through the Lyapunov exponent, the existence of chaos for the perturbed DS is made evident. The application of our study is relevant to examine the dynamic behaviors of the Titan’s atmosphere.

Supported by Dr. Ramdas Pai and Mrs. Vasanthi Pai endowment fund (letter no. 1018/SMIT/HR/Appt./ JRF/Maths/2018-04, dated 27/03/2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacquinot J, McVey BD, Scharer JE (1977) Mode conversion of the fast magnetosonic wave in a deuterium-hydrogen tokamak plasma. Phys Rev Lett 39(2):88–91. https://doi.org/10.1103/physrevlett.39.88

    Article  Google Scholar 

  2. Gottscho RA, Gaebe CE (1986) Negative ion kinetics in RF glow discharges. IEEE Trans Plasma Sci 14(2):92–102. https://doi.org/10.1109/tps.1986.4316511

    Article  Google Scholar 

  3. Saleem H (2007) A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics. Phys Plasmas 14(1):014505. https://doi.org/10.1063/1.2436757

    Article  MathSciNet  Google Scholar 

  4. Chaizy PH, Rème H, Sauvaud JA, d’Uston C, Lin RP, Larson DE, Mitchell DL, Anderson KA, Carlson CW, Korth A, Mendis DA (1991) Negative ions in the coma of comet Halley. Nature 349(6308):393–396. https://doi.org/10.1038/349393a0

    Article  Google Scholar 

  5. Coates AJ, Crary FJ, Lewis GR, Young DT, Waite JH Jr, Sittler EC Jr (2007) Discovery of heavy negative ions in Titan’s ionosphere. Geophys Res Lett 34(22):L22103. https://doi.org/10.1029/2007gl030978

    Article  Google Scholar 

  6. Davydov AS (1985) Solitons in molecular systems. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  7. Sulem P, Sulem C (1999) Nonlinear Schrödinger equation. Springer, Berlin

    MATH  Google Scholar 

  8. Müller P, Garrett Ch, Osborne A (2005) Rogue waves. J Phys Oceanogr 18:66

    Google Scholar 

  9. Solli DR, Ropers C, Koonath P, Jalali B (2007) Optical rogue waves. Nature 450:1054–1057. https://doi.org/10.1038/nature06402

    Article  Google Scholar 

  10. Moslem WM (2011) Langmuir rogue waves in electron-positron plasmas. Phys Plasmas 18(3):032301. https://doi.org/10.1063/1.3559486

    Article  Google Scholar 

  11. El-Awady EI, Moslem WM (2011) On a plasma having nonextensive electrons and positrons: Rogue and solitary wave propagation. Phys Plasmas 18(8):082306. https://doi.org/10.1063/1.3620411

    Article  Google Scholar 

  12. Strogatz SH (2007) Nonlinear dynamics and chaos. Westview Press, USA

    Google Scholar 

  13. Samanta UK, Saha A, Chatterjee P (2013) Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with a q-nonextensive electron velocity distribution. Phys Plasmas 20(2):022111. https://doi.org/10.1063/1.4791660

    Article  Google Scholar 

  14. Chow SN, Hale JK (1982) Methods of bifurcation theory. Springer, New York

    Book  Google Scholar 

  15. Guckenheimer J, Holmes PJ (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  16. Saha A, Chatterjee P (2015) Solitonic, periodic, quasiperiodic and chaotic structures of dust-ion-acoustic waves in nonextensive dusty plasmas. Eur Phys J D 69(9):203. https://doi.org/10.1140/epjd/e2015-60115-7

    Article  Google Scholar 

  17. Mandi L, Saha A, Chatterjee P (2019) Dynamics of ion-acoustic waves in Thomas-Fermi plasmas with source term. Adv Space Res 64:427. https://doi.org/10.1016/j.asr.2019.04.028

    Article  Google Scholar 

  18. Das TK, Saha A, Pal N, Chatterjee P (2017) Effect of dust-ion collisional frequency on transition of dust-ion-acoustic waves from quasiperiodic motion to limit cycle oscillation in a magnetized dusty plasma. Phys Plasmas 24(7):073707. https://doi.org/10.1063/1.4991407

    Article  Google Scholar 

  19. Tamang J, Sarkar K, Saha A (2018) Solitary wave solution and dynamic transition of dust-ion-acoustic waves in a collisional nonextensive dusty plasma with ionization effect. Phys A 505:18–34. https://doi.org/10.1016/j.physa.2018.02.213

    Article  MathSciNet  Google Scholar 

  20. El-Labany S, El-Taibany W, Atteya A (2018) Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons. Phys Lett A 382(6):412–19. https://doi.org/10.1016/j.physleta.2017.12.026

    Article  MathSciNet  MATH  Google Scholar 

  21. El-Monier S, Atteya A (2018) Bifurcation analysis for dust acoustic waves in a four component plasma including warm ions. IEEE Trans Plasma Sci 46(4):815–24. https://doi.org/10.1109/TPS.2017.2766097

    Article  Google Scholar 

  22. Abdelwahed HG, El-Shewy EK, El-Depsy A, El-Shamy EF (2017) Nonlinear dust-ion acoustic periodic travelling waves in a magnetized plasma with two temperature superthermal electrons and stationary charged dust grains. Phys Plasmas 24(2):023703. https://doi.org/10.1063/1.4975664

    Article  Google Scholar 

  23. Shahein R, Seadawy A (2018) Bifurcation analysis of KP and modified KP equations in an unmagnetized dust plasma with nonthermal distributed multi-temperature ions. Indian J Phys 93(7):941–949. https://doi.org/10.1007/s12648-018-1357-3

    Article  Google Scholar 

  24. El-Labany SK, Moslem WM, El-Bedwehy NA, Sabry R, Abd El-Razek HN (2012) Rogue of Titan’s atmosphere. Astrophys Sapce Sci 338:3–8. https://doi.org/10.1007/s10509-011-0923-3

    Article  MATH  Google Scholar 

  25. El Tantawy S (2017) Ion-acoustic waves in ultracold neutral plasmas: modulational instability and dissipative rogue waves. Phys Lett A 381(8):787–791. https://doi.org/10.1016/j.physleta.2016.12.052

    Article  Google Scholar 

  26. Sen A, Tiwari S, Mishra S, Kaw P (2015) Nonlinear wave excitations by orbiting charged space debris objects. Adv Space Res 56(3):429–435. https://doi.org/10.1016/j.asr.2015.03.021

    Article  Google Scholar 

  27. Ali R, Saha A, Chatterjee P (2017) Analytical electron acoustic solitary wave solution for the forced KdV equation in superthermal plasmas. Phys Plasmas 24(12):122106. https://doi.org/10.1063/1.4994562

    Article  Google Scholar 

  28. Chatterjee P, Ali R, Saha A (2018) Analytical solitary wave solution of the dust ion acoustic waves for the damped forced Korteweg-de Vries equation in superthermal plasmas. Z Naturforsch A 73(2):151–159. https://doi.org/10.1515/zna-2017-0358

    Article  Google Scholar 

  29. Zhen H, Tian B, Zhong H, Sun W, Li M (2013) Dynamics of the Zakharov-Kuznetsov-Burgers equations in dusty plasmas. Phys Plasmas 20(8):082311. https://doi.org/10.1063/1.4818508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jharna Tamang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamang, J., Saha, A. (2021). Modeling and Multistability of Ion-Acoustic Waves in Titan’s Atmosphere. In: Giri, D., Buyya, R., Ponnusamy, S., De, D., Adamatzky, A., Abawajy, J.H. (eds) Proceedings of the Sixth International Conference on Mathematics and Computing. Advances in Intelligent Systems and Computing, vol 1262. Springer, Singapore. https://doi.org/10.1007/978-981-15-8061-1_10

Download citation

Publish with us

Policies and ethics