Skip to main content

Discovering Biomarkers in Parkinson’s Disease Using Module Correspondence and Pathway Information

  • Conference paper
  • First Online:
Proceedings of the Sixth International Conference on Mathematics and Computing

Abstract

Genes are the backbone of living bodies. Gene modules are nothing but group of genes responsible for carrying out various life-supporting functions in the body. However, any disruption in the activity of genes leads to an imbalance in the body referred to as diseased condition. Parkinson’s Disease is one such neurological disease caused by the mutation of certain genes in the body. In this paper, we have analyzed the correspondence between modules involved in both healthy and diseased stage of a Parkinsonian patient. An extensive study of these modules in terms of both topological and pathway aspects is done and few interesting biomarkers such as ADCY2, GNB5, HTR2A, GRIN2, and GRIN1 have been discovered which can be associated with Parkinson’s Disease in early or later stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.webmd.com/parkinsons-disease/guide/parkinsons-faq#1.

  2. 2.

    grantome.com/grant/NIH/K01-NS047548-01AI.

  3. 3.

    http://www.alz.org/dementia/parkinsons-disease-symptoms.asp.

References

  1. Barrero, F., Ampuero, I., Morales, B., Vives, F., Del Castillo, J.d.D.L., Hoenicka, J., Yebenes, J.G.: Depression in Parkinson’s disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1). The Pharmacogenomics Journal 5(2),  135 (2005)

    Google Scholar 

  2. Cook AL, Vitale AM, Ravishankar S, Matigian N, Sutherland GT, Shan J, Sutharsan R, Perry C, Silburn PA, Mellick GD et al (2011) NRF2 activation restores disease related metabolic deficiencies in olfactory neurosphere-derived cells from patients with sporadic Parkinson’s disease. PLOS One 6(7):e21907

    Article  Google Scholar 

  3. van Dam, S., Võsa, U., van der Graaf, A., Franke, L., de Magalhães, J.P.: Gene co-expression analysis for functional classification and gene–disease predictions. Briefings in Bioinformatics p. bbw139 (2017)

    Google Scholar 

  4. Deshpande V, Sharma A, Mukhopadhyay R, Thota LNR, Ghatge M, Vangala RK, Kakkar VV, Mundkur L (2016) Understanding the progression of atherosclerosis through gene profiling and co-expression network analysis in Apob tm2sgy ldlr tm1Her double knockout mice. Genomics 107(6):239–247

    Article  Google Scholar 

  5. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., Von Mering, C., et al.: STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research 41(D1), D808–D815 (2012)

    Google Scholar 

  6. Girault JA, Greengard P (2004) The neurobiology of dopamine signaling. Archives of Neurology 61(5):641–644

    Article  Google Scholar 

  7. Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM, Tenesa A, Kusel VI, Sheehan P, Eaaswarkhanth M et al (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLOS Genetics 7(8):e1002237

    Article  Google Scholar 

  8. He D, Liu ZP, Honda M, Kaneko S, Chen L (2012) Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. Journal of Molecular Cell Biology 4(3):140–152

    Article  Google Scholar 

  9. Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB, Jóhannesson SH, Mikati MA, Neville B, Nicole S et al (2014) Distinct neurological disorders with ATP1A3 mutations. The Lancet Neurology 13(5):503–514

    Article  Google Scholar 

  10. Horvath I, Jia X, Johansson P, Wang C, Moskalenko R, Steinau A, Forsgren L, Wagberg T, Svensson J, Zetterberg H et al (2015) Pro-inflammatory S100A9 protein as a robust biomarker differentiating early stages of cognitive impairment in Alzheimers disease. ACS Chemical Neuroscience 7(1):34–39

    Article  Google Scholar 

  11. Hossain SMM, Ray S, Mukhopadhyay A (2017) Preservation affinity in consensus modules among stages of HIV-1 progression. BMC Bioinformatics 18(1):181

    Article  Google Scholar 

  12. Iwamoto T, Okumura S, Iwatsubo K, Kawabe JI, Ohtsu K, Sakai I, Hashimoto Y, Izumitani A, Sango K, Ajiki K et al (2003) Motor dysfunction in type 5 adenylyl cyclase-null mice. Journal of Biological Chemistry 278(19):16936–16940

    Article  Google Scholar 

  13. Kim SJ, Sung JY, Um JW, Hattori N, Mizuno Y, Tanaka K, Paik SR, Kim J, Chung KC (2003) Parkin cleaves intracellular \(\alpha \)-synuclein inclusions via the activation of calpain. Journal of Biological Chemistry 278(43):41890–41899

    Article  Google Scholar 

  14. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience 8(11):1450

    Article  Google Scholar 

  15. Lin L, Göke J, Cukuroglu E, Dranias MR, VanDongen AM, Stanton LW (2016) Molecular features underlying neurodegeneration identified through in vitro modeling of genetically diverse Parkinsons disease patients. Cell Reports 15(11):2411–2426

    Article  Google Scholar 

  16. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2015) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Research 44(D1):D336–D342

    Article  Google Scholar 

  17. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods 9(5):471–472

    Article  Google Scholar 

  18. Rakshit H, Rathi N, Roy D (2014) Construction and analysis of the protein-protein interaction networks based on gene expression profiles of Parkinson’s disease. PLOS ONE 9(8):e103047

    Article  Google Scholar 

  19. Ray, S., Biswas, S., Mukhopadhyay, A., Bandyopadhyay, S.: Detecting Perturbation in Co-Expression Modules Associated with Different Stages of HIV-1 Progression: A Multi-objective Evolutionary Approach. In: Emerging Applications of Information Technology (EAIT), 2014 Fourth International Conference of. pp. 15–20. IEEE (2014)

    Google Scholar 

  20. Ray S, Maulik U (2017) Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach. Scientific Reports 7(1):86

    Article  Google Scholar 

  21. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D (1997) GeneCards: integrating information about genes, proteins and diseases. Trends in Genetics 13(4):163

    Article  Google Scholar 

  22. Shamseldin HE, Masuho I, Alenizi A, Alyamani S, Patil DN, Ibrahim N, Martemyanov KA, Alkuraya FS (2016) GNB5 mutation causes a novel neuropsychiatric disorder featuring attention deficit hyperactivity disorder, severely impaired language development and normal cognition. Genome Biology 17(1):195

    Article  Google Scholar 

  23. Sharma, P., Bhattacharyya, D.K., Kalita, J.K.: Centrality analysis in PPI networks. In: Accessibility to Digital World (ICADW), 2016 International Conference on. pp. 135–140. IEEE (2016)

    Google Scholar 

  24. Sharma, P., Bhattacharyya, D.K., Kalita, J.K.: Detecting gene modules using a subspace extraction technique. In: International Conference on Intelligent Computing and Smart Communication 2019. p. in Press. Springer (2020)

    Google Scholar 

  25. Tassorelli C, Armentero MT, Greco R, Fancellu R, Sandrini G, Nappi G, Blandini F (2007) Behavioral responses and Fos activation following painful stimuli in a rodent model of Parkinson’s disease. Brain Research 1176:53–61

    Article  Google Scholar 

  26. Voon V, Fox SH (2007) Medication-related impulse control and repetitive behaviors in Parkinson disease. Archives of Neurology 64(8):1089–1096

    Article  Google Scholar 

  27. Wallén-Mackenzie Å, Wootz H, Englund H (2010) Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission? Upsala Journal of Medical Sciences 115(1):11–20

    Article  Google Scholar 

  28. Zotenko E, Mestre J, O’Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLOS Computational Biology 4(8):e1000140

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, P., Pandey, A.K., Bhattacharyya, D.K., Kalita, J.K., Dutta, S.C. (2021). Discovering Biomarkers in Parkinson’s Disease Using Module Correspondence and Pathway Information. In: Giri, D., Buyya, R., Ponnusamy, S., De, D., Adamatzky, A., Abawajy, J.H. (eds) Proceedings of the Sixth International Conference on Mathematics and Computing. Advances in Intelligent Systems and Computing, vol 1262. Springer, Singapore. https://doi.org/10.1007/978-981-15-8061-1_20

Download citation

Publish with us

Policies and ethics