Abstract
Dynamical behaviors of ion-acoustic periodic wave (IAPW) and solitary wave (IASW) structures are examined in a three-component collisionless, magnetized solar wind plasma. The Schamel equation is derived and the effect of parameters like efficiency of electron trapping (\(\beta \)), temperature ratio of ion to proton (\(T_i/T_p\)) of the solar wind, \(\kappa -\)index, and traveling wave velocity (\(v_0\)) are considered on IAW solutions of obtained Schamel equation. Typical solar wind parameters are used for computational simulation. The result of the study can be useful to discern the wave features of solar wind plasma.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Steinberg JT, Lazaras AJ, Ogilvie KW, Lepping R, Byrnes J (1996) Differential flow between solar wind protons and alpha particles: first wind observations. Geophys Res Lett 23:1183. https://doi.org/10.1029/96GL00628
Marsch E, Muhlhauser K-H, Rosenbauer H, Schwenn R, Neubauer FM (1982) Solar wind helium ions: observations of the Helios solar probes between 0.3 and 1 AU. J Geophys Res 87:35. https://doi.org/10.1029/JA087iA01p00035
Gurnett DA, Marsch E, Pilipp W, Schwenn R, Rosenbauer H (1979) Ion acoustic waves and related plasma observations in the solar wind. J Geophys Res 84(A5):2029. https://doi.org/10.1029/JA084iA05p02029
Arshad K, Mirza AM, Rehman A (2014) Ion-acoustic waves in non-Maxwellian magnetospheric electron-positron-ion plasma. Astrophys Space Sci 350(2):585–590. https://doi.org/10.1007/s10509-014-1788-z
Sreeraj T, Singh SV, Lakhina GS (2016) Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind. Phys Plasmas 23(8):082901. https://doi.org/10.1063/1.4960657
Bacha M, Gougam LA, Tribeche M (2017) Ion-acoustic rogue waves in magnetized solar wind plasma with nonextensive electrons. Phys Stat Mech Appl 466:199–210. https://doi.org/10.1016/j.physa.2016.09.013
Samanta UK, Saha A, Chatterjee P (2013) Bifurcations of dust ion acoustic traveling waves in a magnetized dusty plasma with a q-nonextensive electron velocity distribution. Phys Plasmas 20:022111. https://doi.org/10.1063/1.4791660
Selim MM, El-Depsy A, El-Shamy EF (2015) Bifurcations of nonlinear ion-acoustic traveling waves in a multicomponent magnetoplasma with superthermal electrons. Astrophys Space Sci 360:66. https://doi.org/10.1007/s10509-015-2574-2
Saha A (2016) Bifurcation, periodic and chaotic motions of the modified equal width-Burgers (MEW-Burgers) equation with external periodic perturbation. Nonlinear Dyn 87(4):2193–2201. https://doi.org/10.1007/s11071-016-3183-5
Saha A (2017) Dynamics of the generalized KP-MEW-Burgers equation with external periodic perturbation. Comput Math Appl 73(9):1879–1885. https://doi.org/10.1016/j.camwa.2017.02.017
Saha A, Ali R, Chatterjee P (2017) Nonlinear excitations for the positron acoustic waves in auroral acceleration regions. Adv Space Res 60:1220. https://doi.org/10.1016/j.asr.2017.06.012
Saha A, Prasad PK, Banerjee S (2019) Bifurcations of ion-acoustic superperiodic waves in auroral zone of Earth’s magnetosphere. Astrophys Space Sci 364:180. https://doi.org/10.1007/s10509-019-3671-4
El-Monier SY, Atteya A (2018) Bifurcation analysis for dust-acoustic waves in a four-component plasma including warm ions. IEEE Trans Plasma Sci 46:815–824. https://doi.org/10.1109/TPS.2017.2766097
Lakhina GS, Singh SV (2015) Generation of Weak Double Layers and Low-Frequency Electrostatic Waves in the Solar Wind. Solar Phys 290(10):3033–3049. https://doi.org/10.1007/s11207-015-0773-1
Williams G, Verheest F, Hellberg MA, Anowar MGM, Kourakis I (2014) A Schamel equation for ion acoustic waves in superthermal plasmas. Phys Plasmas 21(9):092103. https://doi.org/10.1063/1.4894115
Schamel H (1973) A modified Korteweg-de Vries equation for ion acoustic wavess due to resonant electrons. J Plasma Phys 9(03):377. https://doi.org/10.1017/S002237780000756X
Baluku TK, Hellberg MA, Kourakis I, Saini NS (2010) Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys Plasmas 17(5):053702. https://doi.org/10.1063/1.3400229
El-Kalaawy OH (2011) Exact solitary solution of Schamel equation in plasmas with negative ions. Phys Plasmas 18(11):112302. https://doi.org/10.1063/1.3657422
Mangeney A, Salem C, Lacombe JC, Perche C, Manning R, Kellogg PJ, Geoz K, Monson SJ, Bosqued JM (1999) WIND observations of coherent electrostatic waves in the solar wind. Ann Geophys 17:307–320. https://doi.org/10.1007/s00585-999-0307-y
Borovsky JE, Gary SP (2014) How important are the alpha-proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere. J Geophys Res—Space Phys 119:5210–5219. https://doi.org/10.1002/2014JA019758
Livadiotis G (2015) Introduction to special section on Origins and Properties of Kappa Distributions: Statistical Background and Properties of Kappa Distributions in Space Plasmas. J Geophys Res Space Phys 120(3):1607–1619. https://doi.org/10.1002/2014JA020825
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Prasad, P.K., Saha, A. (2021). Dynamical Behavior of Ion-Acoustic Periodic and Solitary Structures in Magnetized Solar Wind Plasma. In: Giri, D., Buyya, R., Ponnusamy, S., De, D., Adamatzky, A., Abawajy, J.H. (eds) Proceedings of the Sixth International Conference on Mathematics and Computing. Advances in Intelligent Systems and Computing, vol 1262. Springer, Singapore. https://doi.org/10.1007/978-981-15-8061-1_33
Download citation
DOI: https://doi.org/10.1007/978-981-15-8061-1_33
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-8060-4
Online ISBN: 978-981-15-8061-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)