Skip to main content

Key Nodes Recognition in Opportunistic Network

  • Conference paper
  • First Online:
Security and Privacy in Social Networks and Big Data (SocialSec 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1298))

  • 784 Accesses

Abstract

There are always communication fragmented regions in opportunistic networks, and Ferry nodes which can periodicity commute between different fragmented regions always be placed in opportunistic networks. At present, the research on Ferry nodes in opportunistic networks mainly focus on the cache management, energy balance and routing algorithm optimization, meanwhile, researches on identifying Ferry nodes in a strange network are less. On the basis of the importance of structure holes and k-cores, this paper puts forward the index to evaluate the dynamic importance of nodes in opportunistic network, and proposes an importance evaluation algorithm of nodes in opportunistic networks based on it, which is used to identify the Ferry nodes clusters in strange networks. Conclusions can draw through experiments that the proposed model has good applicability and can identify Ferry nodes in networks accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, P., et al.: All coverage and low-delay routing algorithm based on message ferry in opportunistic networks. Appl. Res. Comput. 34(03), 819–823 (2017)

    Google Scholar 

  2. Tao, C., Gao, J.: Modeling mobile application test platform and environment: testing criteria and complexity analysis. In: Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test Automation (2014)

    Google Scholar 

  3. Zhang, T., Gao, J., Cheng, J., Uehara, T.: Compatibility testing service for mobile applications. In: 2015 IEEE Symposium on Service-Oriented System Engineering, pp. 179—186 (2015)

    Google Scholar 

  4. Li, S., Qu, W., Liu, C., Qiu, T., Zhao, Z.: Survey on high reliability wireless communication for underwater sensor networks. J. Netw. Comput. Appl. 148, 102446 (2019)

    Article  Google Scholar 

  5. Ikenoue, K., Ueda, K.: Routing method based on data transfer path in DTN environments. In: Barolli, L., Hellinckx, P., Enokido, T. (eds.) Advances on Broad-Band Wireless Computing, Communication and Applications, pp. 544–552. Springer, Cham. https://doi.org/10.1007/978-3-030-33506-9_49

  6. Chen, W., Chen, Z., Li, W., Zeng, F.: An enhanced community-based routing with ferry in opportunistic networks. In: 2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI). pp. 340–344 (2016)

    Google Scholar 

  7. Krug, S., Helbig, M., Seitz, J.: Poster: Utilization of additional nodes in hybrid DTN-manet scenarios. In: Proceedings of the 12th Workshop on Challenged Networks, pp. 35–37 (2017)

    Google Scholar 

  8. Vallikannu, R., George, A., Srivatsa, S.K.: Routing and charging scheme with ferry nodes in mobile adhoc networks. In: 2017 International Conference on Intelligent Computing and Control (I2C2), pp. 1–4 (2017)

    Google Scholar 

  9. Anguswamy, R., Thiagarajan, M., Dagli, C.H.: Systems methodology and framework for problem definition in mobile ad hoc networks. In: 2008 2nd Annual IEEE Systems Conference, pp. 1–7 (2008)

    Google Scholar 

  10. Wang, T., Low, C.P.: Reducing message delay with the general message ferry route (MFR*) problem. In: 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 380–387 (2011)

    Google Scholar 

  11. Ali, A.S., Mahmoud, K.R., Naguib, K.M.: Optimal caching policy for wireless content delivery in d2d networks. J. Network Comput. Appl. 150, 102467 (2020)

    Article  Google Scholar 

  12. Ahmed, K.K.: A mobile agent and message ferry mechanism based routing for delay tolerant network. Thesis (2018)

    Google Scholar 

  13. Hu, C., Lin, H., Hsu, Y., Huang, S., Hui, L., Zhang, Z.: Message forwarding with ferries in delay-tolerant networks. In: 2019 28th Wireless and Optical Communications Conference (WOCC), pp. 1–5 (2019)

    Google Scholar 

  14. Diwaker, C., et al.: An enhanced cluster based movement model using multiple ferries nodes in vanet. Int. J. Manage. IT Eng. 6(10), 68–78 (2016)

    Google Scholar 

  15. Zhaolong, H., Jianguo, L., Zhuoming, R.: Analysis of voluntary vaccination model based on the node degree information. Acta Physica Sinica 62(21), 512–517 (2013)

    Google Scholar 

  16. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  17. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  18. Burt, R.S., Kilduff, M., Tasselli, S.: Social network analysis: foundations and frontiers on advantage. Annual Rev. Psychol. 64(1), 527–547 (2013)

    Article  Google Scholar 

  19. Yu, H., Cao, X., Liu, Z., Li, Y.: Identifying key nodes based on improved structural holes in complex networks. Physica A: Stat. Mech. Appl. 486, 318–327 (2017)

    Article  Google Scholar 

  20. Gang, H., Hao, G., Xiang, X.: Identify important nodes in complex network based on aggregation of multi-attribute preference information. J. Zhejiang Sci-Tech Univ. 41(04), 482–488 (2019)

    Google Scholar 

  21. Shu, J., et al.: Cartical nodes evaluation of opportunistic networks based on topological condensation graph. J. Beijing Univ. Posts Telecommun. 42 (02), 57–62 (2019)

    Google Scholar 

  22. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. Data Min. Knowl. Disc. 30(2), 438–475 (2015). https://doi.org/10.1007/s10618-015-0423-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Natural Science Foundation of China under Grant NO. 61841109, 61662054, Natural Science Foundation of Inner Mongolia under Grand NO. 2019MS06031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Xu, G., Wei, F., Qi, Z., He, L. (2020). Key Nodes Recognition in Opportunistic Network. In: Xiang, Y., Liu, Z., Li, J. (eds) Security and Privacy in Social Networks and Big Data. SocialSec 2020. Communications in Computer and Information Science, vol 1298. Springer, Singapore. https://doi.org/10.1007/978-981-15-9031-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9031-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9030-6

  • Online ISBN: 978-981-15-9031-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics