Skip to main content

Decentralizing Privacy-Preserving Data Aggregation Scheme Using Blockchain in Smart Grid

  • Conference paper
  • First Online:
Security and Privacy in Digital Economy (SPDE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1268))

Included in the following conference series:

Abstract

As a next-generation power system, the smart grid can implement fine-grained smart metering data collection to optimize energy utilization. In recent years, a large number of privacy-preservation data aggregation schemes have been proposed for smart grid, which relies on trusted third party (TTP) or central authority (CA). If the TTP or CA fails, these schemes become insecure. Therefore, this paper proposes a smart grid data aggregation scheme based on blockchain, which does not rely on TTP or CA and achieves decentralization. In this scheme, the leader election algorithm is used to select a smart meter in the residential area as a mining node to build a block. The node adopts Paillier cryptosystem algorithm to aggregate the user’s electricity consumption data. The confidentiality and integrity of user data are guaranteed, which is convenient for billing and power regulation. Security analysis shows that our scheme meets the security and privacy requirements of smart grid data aggregation. The experimental results show that this scheme is more efficient than existing competing schemes in terms of computation and communication overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid-the new and improved power grid: a survey. IEEE Commun. Surv. Tutor. 14(4), 944–980 (2011)

    Article  Google Scholar 

  2. Xue, K.P., Li, S.H., Hong, J.N., et al.: Two-cloud secure database for numeric-related SQL range queries with privacy preserving. IEEE Trans. Inf. Foren. Secur. 12, 1596–1608 (2017)

    Article  Google Scholar 

  3. Wu, J., Dong, M.X., Ota, K., et al.: Securing distributed storage for social internet of things using regenerating code and blom key agreement. Peer-to-Peer Netw. Appl. 8, 1133–1142 (2015)

    Article  Google Scholar 

  4. Guan, Z., Si, G., Du, X., Liu, P.: Protecting User Privacy Based on Secret Sharing with Error Tolerance for Big Data in Smart Grid. arXiv preprint arXiv:1811.06918 (2018)

  5. Chen, J., Liu, G., Liu, Y.: Lightweight privacy-preserving raw data publishing scheme. IEEE Trans. Emerg. Top. Comput. (2020). https://doi.org/10.1109/tetc.2020.2974183

  6. Liu, Y., Zhao, Q.: E-voting scheme using secret sharing and K-anonymity. World Wide Web: Internet Web Inf. Syst. 22(4), 1657–1667 (2019)

    Article  Google Scholar 

  7. Hassan, M.U., Rehmani, M.H., Kotagiri, R., Zhang, J., Chen, J.: Differential privacy for renewable energy resources based smart metering. J. Parallel Distrib. Comput. 131, 69–80 (2019)

    Article  Google Scholar 

  8. Piao, C., Shi, Y., Yan, J., Zhang, C., Liu, L.: Privacy-preserving governmental data publishing: a fog-computing-based differential privacy approach. Future Gener. Comput. Syst. 90, 158–174 (2019)

    Article  Google Scholar 

  9. Li, S., Xue, K., Yang, Q., Hong, P.: PPMA: privacy-preserving multisubset data aggregation in smart grid. IEEE Trans. Industr. Inf. 14, 462–471 (2018)

    Article  Google Scholar 

  10. Liu, Y., Guo, W., Fan, C., Chang, L., Cheng, C.: A practical privacy-preserving data aggregation (3PDA) scheme for smart grid. IEEE Trans. Industr. Inf. 15(3), 1767–1774 (2018)

    Article  Google Scholar 

  11. Guan, Z., Zhang, Y., Zhu, L., et al.: EFFECT: an efficient flexible privacy-preserving data aggregation scheme with authentication in smart grid. Sci. China Inf. Sci. 62(3), 32103 (2019)

    Article  Google Scholar 

  12. Karampour, A., Ashouri-Talouki, M., Ladani, B.T.: An efficient privacy-preserving data aggregation scheme in smart grid. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), pp. 1967–1971. IEEE (2019)

    Google Scholar 

  13. Chen, Y., Martínez, J.F., Castillejo, P., López, L.: A privacy-preserving noise addition data aggregation scheme for smart grid. Energies 11(11), 2972 (2018)

    Article  Google Scholar 

  14. Guan, Z., Zhang, Y., Wu, L., et al.: Appa: an anonymous and privacy preserving data aggregation scheme for fog-enhanced IoT. J. Netw. Comput. 125, 82–92 (2019)

    Article  Google Scholar 

  15. Song, J., Liu, Y., Shao, J., Tang, C.: A dynamic membership data aggregation (DMDA) protocol for smart grid. IEEE Syst. J. 14(1), 900–908 (2020)

    Article  Google Scholar 

  16. Okay, F.Y., Ozdemir, S., Xiao, Y.: Fog computing-based privacy preserving data aggregation protocols. Trans. Emerg. Telecommun. Technol. 31(4), e3900 (2020)

    Google Scholar 

  17. Guan, Z.T., et al.: Privacy-preserving and efficient aggregation based on blockchain for power grid communications in smart communities. IEEE Commun. Mag. 56(7), 82–88 (2018)

    Article  Google Scholar 

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted (2008)

    Google Scholar 

  19. Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V.: Blockchain technology: beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)

    Google Scholar 

  20. Yuan, Y., Wang, F.-Y.: Parallel blockchain: concept, methods and issues. Acta Autom. Sinica 43(10), 1703–1712 (2017)

    Google Scholar 

  21. Xie, Q.H.: Research on blockchain technology and financial business innovation. Financ. Dev. Res. 5, 77–82 (2017)

    Google Scholar 

  22. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30

    Chapter  Google Scholar 

  23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  24. Shi, E., Chan, H.T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Annual Network & Distributed System Security Symposium (NDSS), vol. 2, pp. 1–17 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yining Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, H., Liu, Y., Zeng, Z. (2020). Decentralizing Privacy-Preserving Data Aggregation Scheme Using Blockchain in Smart Grid. In: Yu, S., Mueller, P., Qian, J. (eds) Security and Privacy in Digital Economy. SPDE 2020. Communications in Computer and Information Science, vol 1268. Springer, Singapore. https://doi.org/10.1007/978-981-15-9129-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9129-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9128-0

  • Online ISBN: 978-981-15-9129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics