Skip to main content

High-Accuracy Reliability Prediction Approach for Blockchain Services Under BaaS

  • Conference paper
  • First Online:
Blockchain and Trustworthy Systems (BlockSys 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1267))

Included in the following conference series:

Abstract

With the continuous evolution of service-oriented computing paradigm, block- chain as a service (BaaS) has emerged, which is crucial in the development of blockchain-based applications. To build high-quality blockchain-based system, users must select highly reliable blockchain services (peers) with excellent quality of service (QoS). However, owing to the large number of services and the sparsity of personalized QoS data, it is difficult to select the optimal services. Hence, we propose a QoS-based blockchain service reliability prediction framework (BSRPF) under BaaS. In this framework, we employ a matrix factorization-based method to perform accurate QoS prediction. To validate BSPRF, we conducted experiments based on large-scale real-world data, and the results show that BSPRF achieves high prediction accuracy and outperforms other popular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ibm.com/blockchain/platform/.

References

  1. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14, 352 (2018)

    Article  Google Scholar 

  2. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, pp. 839–858. IEEE Computer Society (2016)

    Google Scholar 

  3. Liang, W., Tang, M., Long, J., Peng, X., Xu, J., Li, K.: A secure faBric blockchain-based data transmission technique for industrial Internet-of-Things. IEEE Trans. Ind. Inf. 15, 3582–3592 (2019)

    Article  Google Scholar 

  4. Liang, W., Fan, Y., Li, K., Zhang, D., Gaudiot, J.: Secure data storage and recovery in industrial blockchain network environments. IEEE Trans. Ind. Inf. 1 (2020). https://doi.org/10.1109/TII.2020.2966069

  5. Lu, Q., Liu, Y., Weber, I., Zhu, L., Zhang, W.: uBaaS: a unified blockchain as a service platform. Future Gener. Comput. Syst. 101, 564–575 (2019)

    Article  Google Scholar 

  6. Guo, L., Mu, D., Cai, X., Tian, G., Hao, F.: Personalized QoS prediction for service recommendation with a service-oriented tensor model. IEEE Access 7, 55721–55731 (2019)

    Article  Google Scholar 

  7. Wu, J., Chen, L., Feng, Y., Zheng, Z., Zhou, M., Wu, Z.: Predicting quality of service for selection by neighborhood-based collaborative filtering. IEEE Trans. Syst. Man Cybern. Syst. 43, 428–439 (2013)

    Article  Google Scholar 

  8. Yang, Y., Zheng, Z., Niu, X., Tang, M., Lu, Y., Liao, X.: A location-based factorization machine model for web service QoS prediction. IEEE Trans. Serv. Comput. 1 (2018). https://doi.org/10.1109/TSC.2018.2876532

  9. Zheng, Z., Lyu, M.R.: Personalized reliability prediction of web services. ACM Trans. Softw. Eng. Methodol. (TOSEM) 22, 25–25 (2013)

    Article  Google Scholar 

  10. Li, S., Wen, J., Luo, F., Cheng, T., Xiong, Q.: A location and reputation aware matrix factorization approach for personalized quality of service prediction. In: 2017 IEEE International Conference on Web Services (ICWS), Los Alamitos, CA, USA, pp. 652–659. IEEE Computer Society (2017)

    Google Scholar 

  11. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized QoS prediction for web services via collaborative filtering. In: IEEE International Conference on Web Services (ICWS 2007), Los Alamitos, CA, USA, pp. 439–446. IEEE Computer Society (2007)

    Google Scholar 

  12. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7, 76–80 (2003)

    Article  Google Scholar 

  13. Zheng, Z., Ma, H., Lyu, M.R., King, I.: WSRec: a collaborative filtering based web service recommender system. In: 2009 IEEE International Conference on Web Services, Los Alamitos, CA, USA, pp. 437–444. IEEE Computer Society (2009)

    Google Scholar 

  14. Zhu, J., Kang, Y., Zheng, Z., Lyu, M.R.: A clustering-based QoS prediction approach for web service recommendation. In: 2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, Los Alamitos, CA, USA, pp. 93–98. IEEE Computer Society (2012)

    Google Scholar 

  15. Hoffman, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22, 89–115 (2004)

    Article  Google Scholar 

  16. Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the 22nd International Conference on Machine Learning, New York, NY, USA, pp. 713–719. Association for Computing Machinery (2005)

    Google Scholar 

  17. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning, vol. 25, pp. 880–887 (2008)

    Google Scholar 

  18. Xiao, J., Lou, J., Jiang, J., Li, X., Yang, X., Huang, Y.: Blockchain architecture reliability-based measurement for circuit unit importance. IEEE Access, 1 (2018)

    Google Scholar 

  19. Chen, W., Zheng, Z., Cui, J., Ngai, E.C.H., Zheng, P., Zhou, Y.: Detecting ponzi schemes on ethereum: towards healthier blockchain technology. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, Los Alamitos, CA, USA, pp. 1409–1418. ACM (2018)

    Google Scholar 

  20. Lei, K., Zhang, Q., Xu, L., Qi, Z.: Reputation-based byzantine fault-tolerance for consortium blockchain. In: 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Lyon, France, pp. 604–611. IEEE Computer Society (2018)

    Google Scholar 

  21. Liu, Y., Zheng, K., Craig, P., Li, Y., Huang, X.: Evaluating the reliability of blockchain based Internet of Things applications. In: 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN), Los Alamitos, CA, USA, pp. 230–231. IEEE Computer Society (2018)

    Google Scholar 

  22. Kalodner, H., Goldfeder, S., Chator, A., Möser, M., Narayanan, A.: BlockSci: Design and applications of a blockchain analysis platform, pp, 1–14. arXiv: Cryptography and Security (2017)

  23. Cai, W., Du, X., Xu, J.: A personalized QoS prediction method for web services via blockchain-based matrix factorization. Sensors 19, 2749–2749 (2019)

    Article  Google Scholar 

  24. Zheng, W., Zheng, Z., Chen, X., Dai, K., Li, P., Chen, R.: NutBaaS: a blockchain-as-a-service platform. IEEE Access, 134422–134433 (2019)

    Google Scholar 

  25. Zheng, P., Zheng, Z., Chen, L.: Selecting Reliable Blockchain Peers via Hybrid Blockchain Reliability Prediction, pp. 1–11. CoRR. abs/1910.14614 (2019)

    Google Scholar 

  26. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proceedings of the 20th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, pp. 1257–1264. Curran Associates Inc., (2007)

    Google Scholar 

  27. Lyu, M.R.: Handbook of software reliability engineering. Softw. IEEE 18, 98–98 (1996)

    Google Scholar 

  28. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA, pp. 43–52. Morgan Kaufmann Publishers Inc., (2013)

    Google Scholar 

  29. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, New York, NY, USA, pp. 285–295. Association for Computing Machinery (2001)

    Google Scholar 

  30. Zheng, Z., Lyu, M.R.: Collaborative reliability prediction of service-oriented systems. In: International Conference on Software Engineering, Los Alamitos, CA, USA, pp. 35–44. IEEE Computer Society (2010)

    Google Scholar 

Download references

Acknowledgment

This research was financially supported by the National Natural Science Foundation of China (No. 61702318), the Shantou University Scientific Research Start-up Fund Project (No .NTF18024),2018 Provincial and Municipal Vertical Coordination Management Science and Technology Planning Project (No. 180917124960518), 2019 Guangdong province special fund for science and technology (“major special projects + task list”) project, and in part by 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG08D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Zhuang, Z., Wang, K., Liang, W. (2020). High-Accuracy Reliability Prediction Approach for Blockchain Services Under BaaS. In: Zheng, Z., Dai, HN., Fu, X., Chen, B. (eds) Blockchain and Trustworthy Systems. BlockSys 2020. Communications in Computer and Information Science, vol 1267. Springer, Singapore. https://doi.org/10.1007/978-981-15-9213-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9213-3_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9212-6

  • Online ISBN: 978-981-15-9213-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics