Skip to main content

Large-Scale 3D Mapping of Subarctic Forests

  • Conference paper
  • First Online:
Field and Service Robotics

Abstract

The ability to map challenging subarctic environments opens new horizons for robotic deployments in industries such as forestry, surveillance, and open-pit mining. In this paper, we explore the possibilities of large-scale lidar mapping in a boreal forest. Computational and sensory requirements with regards to contemporary hardware are considered as well. The lidar mapping is often based on the Simultaneous Localization and Mapping (SLAM) technique relying on pose graph optimization, which fuses the Iterative Closest Point (ICP) algorithm, Global Navigation Satellite System (GNSS) positioning, and Inertial Measurement Unit (IMU) measurements. To handle those sensors directly within the ICP minimization process, we propose an alternative approach of embedding external constraints. Furthermore, a novel formulation of a cost function is presented and cast into the problem of handling uncertainties from GNSS and lidar points. To test our approach, we acquired a large-scale dataset in the Forêt Montmorency research forest. We report on the technical problems faced during our winter deployments aiming at building 3D maps using our new cost function. Those maps demonstrate both global and local consistency over 4.1 km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zlot, R., Bosse, M.: Efficient large-scale three-dimensional mobile mapping for underground mines. JFR 31(5), 758–779 (2014)

    Google Scholar 

  2. Pierzchała, M., Giguère, P., Astrup, R.: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agri. 145, 217–225 (2018)

    Article  Google Scholar 

  3. Williams, S., Parker, L.T., Howard, A.M.: Terrain reconstruction of glacial surfaces: robotic surveying techniques. RA Magaz. 19(4), 59–71 (2012)

    Google Scholar 

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. TPAMI 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets: open-source library and experimental protocol. Auton. Robot. 34(3), 133–148 (2013)

    Article  Google Scholar 

  6. Thrun, S., Montemerlo, M.: The graphSLAM algorithm with applications to large-scale mapping of urban structures. IJRR 25(5–6), 403–429 (2006)

    Google Scholar 

  7. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. T-RO 32(6), 1309–1332 (2016)

    Google Scholar 

  8. Landry, D., Pomerleau, F., Giguère, P.: CELLO-3D: estimating the covariance of ICP in the real world. In: ICRA (2019)

    Google Scholar 

  9. Lever, J.H., Delaney, A.J., Ray, L.E., Trautmann, E., Barna, L.A., Burzynski, A.M.: Autonomous GPR surveys using the Polar Rover Yeti. JFR 30(2), 194–215 (2013)

    Google Scholar 

  10. Jagbrant, G., Underwood, J.P., Nieto, J., Sukkarieh, S.: LiDAR based tree and platform localisation in almond orchards. In: FSR, pp. 469–483 (2015)

    Google Scholar 

  11. Williams, S., Howard, A.M.: Developing monocular visual pose estimation for arctic environments. JFR 71(5), 486–494 (2009)

    Google Scholar 

  12. Paton, M., Pomerleau, F., Barfoot, T.D.: In the dead of winter: challenging vision-based path following in extreme conditions. STAR 113, 563–576 (2016)

    Google Scholar 

  13. McDaniel, M.W., Takayuki, N., Brooks, C.A., Salesses, P., Lagnemma, K.: Terrain classification and identification of tree stems using ground-based LiDAR. JFR 29, 891–910 (2012)

    Google Scholar 

  14. Wallace, L., Lucieer, A., Malenovsk, Z., Turner, D., et al.: Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7(3) (2016)

    Google Scholar 

  15. Tian, J., Reinartz, P., d’Angelo, P., Ehlers, M.: Region-based automatic building and forest change detection on cartosat-1 stereo imagery. ISPRS 79, 226–239 (2013)

    Google Scholar 

  16. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J, Robot. Res. (2013)

    Google Scholar 

  17. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Rob. 4(1), 1–104 (2015)

    Article  Google Scholar 

  18. Ohta, N., Kanatani, K.: Optimal estimation of three-dimensional rotation and reliability evaluation. In: ECCV, pp. 175–187 (1998)

    Google Scholar 

  19. Estépar, R.S.J., Brun, A., Westin, C.-F.: Robust generalized total least squares iterative closest point registration. In: MICCAI (2004)

    Google Scholar 

  20. Maier-hein, L., Franz, A.M., Santos, T.R., Schmidt, M., Fangerau, M., et al.: Convergent ICP algorithm to accomodate anisotropic and inhomogenous localization error. TPAMI 34(8), 1520–1532 (2012)

    Article  Google Scholar 

  21. Billings, S.D., Boctor, E.M., Taylor, R.H.: Iterative most-likely point registration (IMLP): a robust algorithm for computing optimal shape alignment. PLoS ONE, 1–45 (2015)

    Google Scholar 

  22. Segal, A.V., Haehnel, D., Thrun, S.: Generalized-ICP. In: RSS (2009)

    Google Scholar 

  23. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: ICRA, pp. 2724–2729 (1992)

    Google Scholar 

  24. Babin, P., Giguère, P., Pomerleau, F.: Analysis of robust functions for registration algorithms. In: ICRA (2019)

    Google Scholar 

  25. Balachandran, R., Fitzpatrick, J.M.: Iterative solution for rigid-body point-based registration with anisotropic weighting. SPIE 7261, 1–10 (2009)

    Google Scholar 

  26. Pomerleau, F., Krüsi, P., Colas, F., Furgale, P., Siegwart, R.: Long-term 3D map maintenance in dynamic environments. In: ICRA, pp. 3712–3719 (2014)

    Google Scholar 

  27. Laconte, J., Deschênes, S.-P., Labussière, M., Pomerleau, F.: Lidar measurement bias estimation via return waveform modelling in a context of 3d mapping. In: ICRA (2019)

    Google Scholar 

Download references

Acknowledgements

This work was financed by Fonds de Recherche du Québec – Nature et technologies (FRQNT) and Natural Sciences and Engineering Research Council of Canada (NSERC) through the grant CRDPJ 527642-18 SNOW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Babin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babin, P., Dandurand, P., Kubelka, V., Giguère, P., Pomerleau, F. (2021). Large-Scale 3D Mapping of Subarctic Forests. In: Ishigami, G., Yoshida, K. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-15-9460-1_19

Download citation

Publish with us

Policies and ethics