Skip to main content

Ray Tracing and Use of Shadows as Features for Determining Location in Lunar Polar Terrain

  • Conference paper
  • First Online:
Field and Service Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 16))

  • 1020 Accesses

Abstract

Ice is the most valuable resource on the Moon. It exists only at the poles where shadows are extensive and drivable routes are short. Robot routes to reach this ice are tenuous. Sun-synchronous lunar polar routes offer order-of-magnitude greater duration and range if such routes are achievable. Sun-synchrony is brittle in the sense that a rover must be at precisely scheduled time and place, so special localization techniques are warranted. Methods for terrain-based localization that work at equatorial regions are challenged at the lunar poles, where the grazing sunlight casts long shadows that obscure and change views over time. The shadows are shown here to accentuate craters as localization features. This paper presents a method that improves terrain registration at the poles of the Moon by probabilistically considering sensor and terrain uncertainty, and exploiting shadows as semantic features for localization. This method is validated and evaluated in simulated experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan, M., Wong, U., Furlong, P.M., Rogg, A., McMichael, S., Welsh, T., Chen, I., Peters, S., Gerkey, B., Quigley, M., et al.: Planetary rover simulation for lunar exploration missions. In: 2019 IEEE Aerospace Conference, pp. 1–19. IEEE (2019)

    Google Scholar 

  2. Carle, P.J.F., Furgale, P.T., Barfoot, T.D.: Long-range rover localization by matching lidar scans to orbital elevation maps. J. Field Robot. 27(3), 344–370 (2010)

    Article  Google Scholar 

  3. Cheng, Y., Johnson, A.E., Matthies, L.H., Olson, C.F.: Optical landmark detection for spacecraft navigation (2003)

    Google Scholar 

  4. Cozman, F., Krotkov, E., Guestrin, C.: Outdoor visual position estimation for planetary rovers. Auton. Robot. 9(2), 135–150 (2000)

    Article  Google Scholar 

  5. Di, K., Liu, Z., Yue, Z.: Mars rover localization based on feature matching between ground and orbital imagery. Photogramm. Eng. Remote Sens. 77(8), 781–791 (2011)

    Article  Google Scholar 

  6. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vision 70(1), 41–54 (2006)

    Article  Google Scholar 

  7. Foil, G., Cunningham, C., Wettergreen, D.S., Whittaker, W.L.: Onboard detection and correction of orbital registration errors using rover imagery (2014)

    Google Scholar 

  8. Gutiérrez-Gómez, D., Mayol-Cuevas, W., Guerrero, J.J.: Inverse depth for accurate photometric and geometric error minimisation in rgb-d dense visual odometry. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 83–89. IEEE (2015)

    Google Scholar 

  9. Hwangbo, J.W., Di, K., Li, R.: Integration of orbital and ground image networks for the automation of rover localization. In: ASPRS 2009 Annual Conference (2009)

    Google Scholar 

  10. Johnson, A.E., Cheng, Y., Montgomery, J.F., Trawny, N., Tweddle, B., Zheng, J.X.: Real-time terrain relative navigation test results from a relevant environment for mars landing. In: AIAA Guidance, Navigation, and Control Conference, p. 0851 (2015)

    Google Scholar 

  11. Johnson, A.E., Montgomery, J.F.: Overview of terrain relative navigation approaches for precise lunar landing. In: 2008 IEEE Aerospace Conference, pp. 1–10. IEEE (2008)

    Google Scholar 

  12. Nefian, A.V., Bouyssounouse, X., Edwards, L., Kim, T., Hand, E., Rhizor, J., Deans, M., Bebis, G., Fong, T.: Planetary rover localization within orbital maps. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1628–1632. IEEE (2014)

    Google Scholar 

  13. Nefian, A.V., Edwards, L.J., Lees, D., Keely, L., Parker, T.J., Malin, M.: Automatic rover localization in orbital maps. In: Lunar and Planetary Science Conference, vol. 48 (2017)

    Google Scholar 

  14. Oh, J., Toth, C.K., Grejner-Brzezinska, D.A.: Automatic georeferencing of aerial images using stereo high-resolution satellite images. Photogramm. Eng. Remote Sens. 77(11), 1157–1168 (2011)

    Article  Google Scholar 

  15. Otten, N.D.: Planning for Sun-Synchronous Lunar Polar Roving. Ph.D. thesis (2018)

    Google Scholar 

  16. Rogers, J.G., Trevor, A.J.B., Nieto-Granda, C., Christensen, H.I.: Simultaneous localization and mapping with learned object recognition and semantic data association. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1264–1270. IEEE (2011)

    Google Scholar 

  17. Stein, F., Medioni, G.: Map-based localization using the panoramic horizon. IEEE Trans. Robot. Automat. 11(6), 892–896 (1995)

    Article  Google Scholar 

  18. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media (2010)

    Google Scholar 

  19. Wong, A., Clausi, D.A.: Arrsi: Automatic registration of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 45(5), 1483–1493 (2007)

    Article  Google Scholar 

  20. Woods, M., Shaw, A., Tidey, E., Van Pham, B., Simon, L., Mukherji, R., Maddison, B., Cross, G., Kisdi, A., Tubby, W., et al.: Seeker-autonomous long-range rover navigation for remote exploration. J. Field Robot. 31(6), 940–968 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NASA Space Technology Research Fellowship under grant NNX16AM68H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, E., “Red” Whittaker, W. (2021). Ray Tracing and Use of Shadows as Features for Determining Location in Lunar Polar Terrain. In: Ishigami, G., Yoshida, K. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-15-9460-1_22

Download citation

Publish with us

Policies and ethics