Skip to main content

Experimental Validation of Structured Receding Horizon Estimation and Control for Mobile Ground Robot Slip Compensation

  • Conference paper
  • First Online:
Field and Service Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 16))

Abstract

To achieve high-accuracy tracking performance for wheeled mobile robots in spatially varying terrain conditions, it is necessary to estimate both the robot’s state and the slip conditions of the environment to a high degree of precision. The receding horizon estimation and control (RHEC) framework presents a systematic, adaptive optimisation approach to this problem, to which our prior work proposed a structured blocking (SB) extension to address performance limitations for motion both at high speeds and over varying terrain. In this work, we validate these results in a series of preliminary field experiments with the Swagbot platform, demonstrating performance improvements in position tracking of up to 7%, and up to 13% for speed tracking at speeds of 1.5 and 2.5 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, M., Imou, K., Wakabayashi, K., Yokoyama, S.: Review of research on agricultural vehicle autonomous guidance. Int. J. Agric. Biol. Eng. 2(3), 1–16 (2009)

    Google Scholar 

  2. Kong, H., Sukkarieh, S.: An internal model approach to estimation of systems with arbitrary unknown inputs. Automatica (2019) (accepted and to appear)

    Google Scholar 

  3. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  4. Kraus, T., Ferreau, H.J., Kayacan, E., Ramon, H., De Baerdemaeker, J., Diehl, M., Saeys, W.: Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles. Comput. Electron. Agric. 98, 25–33 (2013)

    Article  Google Scholar 

  5. Kayacan, E., Young, S.N., Peschel, J.M., Chowdhary, G.: High-precision control of tracked field robots in the presence of unknown traction coefficients. J. Field Robot. 1–13 (2018)

    Google Scholar 

  6. Kayacan, E., Zhang, Z., Chowdhary, G.: Embedded high precision control and corn stand counting algorithms for an ultra-compact 3D printed field robot. In: Proceedings of Robotics: Science and Systems, pp. 1–8, Pittsburgh, Pennsylvania (2018)

    Google Scholar 

  7. Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Distributed nonlinear model predictive control of an autonomous tractor-trailer system. Mechatronics 24(8), 926–933 (2014)

    Article  Google Scholar 

  8. Kong, H., Goodwin, G., Seron, M.M.: Predictive metamorphic control. Automatica 49, 3670–3676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodwin, G.C., Kong, H., Mirzaeva, G., Seron, M.: Robust model predictive control: reflections and opportunities. J. Control Decis. 1(2), 115–148 (2014)

    Article  Google Scholar 

  10. Kong, H., Sukkarieh, S.: Metamorphic moving horizon estimation. Automatica 97, 167–171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kong, H., Sukkarieh, S.: Suboptimal receding horizon estimation via noise blocking. Automatica 98, 66–75 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wallace, N.D., Kong, H., Hill, A.J., Sukkarieh, S.: Structured noise blocking strategies for receding horizon estimation and control of mobile robots with slip. In: Proceedings of Australasian Conference on Robotics and Automation, pp. 1–10, Lincoln, New Zealand (2018)

    Google Scholar 

  13. Wallace, N.D., Kong, H., Hill, A.J., Sukkarieh, S.: Receding horizon estimation and control with structured noise blocking for mobile robot slip compensation. In: 2019 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7, Montreal, Canada (2019)

    Google Scholar 

  14. Wallace, N.D., Kong, H., Hill, A.J., Sukkarieh, S.: Motion cost characterisation of an omnidirectional WMR on uneven terrains. In: Proceedings of Joint 12th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles and 1st IFAC workshop on Robot Control, Daejeon, Korea (2019) (accepted and to appear)

    Google Scholar 

  15. Dissanayake, G., Sukkarieh, S., Nebot, E., Durrant-Whyte, H.: The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE Trans. Robot. Autom. 17(5), 731–747 (2001)

    Article  Google Scholar 

  16. Yi, J., Wang, H., Zhang, J., Song, D., Jayasuriya, S., Liu, J.: Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation. IEEE Trans. Robot. 25(5), 1087–1097 (2009)

    Article  Google Scholar 

  17. Backman, J., Oksanen, T., Visala, A.: Navigation system for agricultural machines: nonlinear model predictive path tracking. Comput. Electron. Agric. 82, 32–43 (2012)

    Article  Google Scholar 

  18. Kayacan, E., Saeys, W., Ramon, H., Belta, C., Peschel, J.M.: Experimental validation of linear and nonlinear MPC on an articulated unmanned ground vehicle. IEEE/ASME Trans. Mechatron. 23(5), 2023–2030 (2018)

    Article  Google Scholar 

  19. Lenain, R., Thuilot, B., Cariou, C., Martinet, P.: High accuracy path tracking for vehicles in presence of sliding: application to farm vehicle automatic guidance for agricultural tasks. Auton. Robots 21(1), 79–97 (2006)

    Article  Google Scholar 

  20. Lenain, R., Thuilot, B., Cariou, C., Martinet, P.: Mixed kinematic and dynamic sideslip angle observer for accurate control of fast off-road mobile robots. J. Field Robot. 27(2), 181–196 (2010)

    MATH  Google Scholar 

  21. LaValle, S.M.: Planning Algorithms, pp. 722–726. Cambridge University Press (2006)

    Google Scholar 

  22. Snider, J.M.: Automatic steering methods for autonomous automobile path tracking. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08 (2009)

    Google Scholar 

  23. Kong, J., Pfeiffer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle models for autonomous driving control design. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1094–1099, Seoul, South Korea (2015)

    Google Scholar 

  24. Ferreau, H., Kraus, T., Vukov, M., Saeys, W., Diehl, M.: High-speed moving horizon estimation based on automatic code generation. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 687–692, Maui, HI (2012)

    Google Scholar 

  25. Rao, C.V., Rawlings, J.B., Lee, J.H.: Constrained linear state estimation-a moving horizon approach. Automatica 37(10), 1619–1628 (2001)

    Article  MATH  Google Scholar 

  26. Voelker, A., Kouramas, K., Pistikopoulos, E.: Moving horizon estimation: error dynamics and bounding error sets for robust control. Automatica 49(4), 943–948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morabito, B., Kogel, M., Bullinger, E., Pannocchia, G., Findeisen, R.: Simple and efficient moving horizon estimation based on the fast gradient method. In: Proceedings of 5th IFAC Conference on NMPC, pp. 428–433, Seville, Spain (2015)

    Google Scholar 

  28. Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12(4), 577–585 (2002)

    Article  Google Scholar 

  29. Houska, B., Ferreau, H.J., Diehl, M.: ACADO toolkit—an open source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods 32(3), 298–312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Wallace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wallace, N.D., Kong, H., Hill, A.J., Sukkarieh, S. (2021). Experimental Validation of Structured Receding Horizon Estimation and Control for Mobile Ground Robot Slip Compensation. In: Ishigami, G., Yoshida, K. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-15-9460-1_29

Download citation

Publish with us

Policies and ethics