Skip to main content

Principal Component Analysis, Quantifying, and Filtering of Poincaré Plots for time series typal for E-health

  • Chapter
  • First Online:
Health Informatics: A Computational Perspective in Healthcare

Abstract

This study deals with Poincaré Plots, which go a handy tool for visualizing and probing signals and records in medicine and E-health. The Poincaré Plot is a kind of recurrence graph as well as a scatter chart. It is also an embedding of a time series into 2D-space. We revised here the time-tested “ellipse fitting technique,” a popular method of the quantifying of Poincaré Plots, within more general Principal Components Analysis. The “ellipse fitting” turned out a simplified option of the Principal Components Analysis. We have framed the central approximation of the “ellipse fitting” and given the numeric gage of its reality. We have offered a new way of filtering the signal within Principal Components Analysis. At last, we have tested the abilities of both theories in case studies. The typal series for E-health were in use: a short series of ambulatory blood pressure tests and a more extended one for self-monitoring of blood glucose. The accuracy of the numeric descriptors of Poincaré Plots is almost the same with both theories. Still, the “ellipse fitting” may give a notable fault for the direction of the first Principal Component. Filtered Poincaré Plots keep the shapes of its originals, the descriptors’ values, and the fractal scaling law. However, the fractal dimension is a bit drop after the filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poincaré Recurrence Theorem (1890–1897), 2001, http://www.math.umd.edu/~lvrmr/History/Recurrence.html. Last accessed 25 Feb 2020.

  2. Nadkarni, M. G. (2013). The Poincaré recurrence lemma. In Basic ergodic theory. Texts and readings in mathematics (Vol. 6, pp. 1–12). Gurgaon: Hindustan Book Agency (2013). https://doi.org/10.1007/978-93-86279-53-8_1.

  3. Carathéodory, C.: Über den Wiederkehrsatz von Poincaré., Sitzungsber. Preuß. Akad. d Wiss. Berlin, math-phys. KI. 1919, pp. 580–584 (1919) (in German).

    Google Scholar 

  4. Marwan, N. (2008). A historical review of recurrence plots. The European Physical Journal Special Topics, 164, 3–12. https://doi.org/10.1140/epjst/e2008-00829-1.

    Article  Google Scholar 

  5. Yang, A. C.-C. (2006). Poincaré Plots: a mini-review, Physionet.Org. (2006) 16. https://archive.physionet.org/events/hrv-2006/yang.pdf. Last accessed February 25, 2020.

  6. BTL corp., Poincaré Graph Complete ECG record in one sight Constructing a Poincaré graph, BTL (2014).https://files.btlnet.com/product-document/9792e3d5-3dbf-45d8-9e84-5c964a6a8602/BTL-Cardiopoint_WP_Poincare-graph_EN400_9792e3d5-3dbf-45d8-9e84-5c964a6a8602_original.pdf. Last accessed February 25, 2020.

  7. Kopf, D. (2018) A brief history of the scatter plot—data visualization’s greatest invention, March 31, 2018. https://qz.com/1235712/the-origins-of-the-scatter-plot-data-visualizations-greatest-invention. Last accessed February 25, 2020.

  8. Friendly, M., & Denis, D. (2005). The early origins and development of the scatterplot. Journal of the History of the Behavioral Sciences, 41, 103–130. https://doi.org/10.1002/jhbs.20078.

    Article  Google Scholar 

  9. Schechtman, V. L., Raetz, S., Harper, R. K., Garfinkel, A., Wilson, A. J., Southall, D. P., et al. (1992). Dynamic analysis of cardiac R-R intervals in normal infants and in infants who subsequently succumbed to the sudden infant death syndrome. Pediatric Research, 31, 606–612. https://doi.org/10.1203/00006450-199206000-00014.

    Article  Google Scholar 

  10. Woo, M. A., Stevenson, W. G., Moser, D. K., Trelease, R. B., & Harper, R. M. (1992). Patterns of beat-to-beat heart rate variability in advanced heart failure. American Heart Journal, 123(3), 704–710. https://doi.org/10.1016/0002-8703(92)90510-3V.

    Article  Google Scholar 

  11. Schechtman, L., Harper, R. K., & Harper, R. M. (1993). Development of heart rate dynamics during sleep-waking states in normal infants. Pediatric Research, 34, 618–623.

    Article  Google Scholar 

  12. Woo, M. A., Stevenson, W. G., Moser, D. K., & Middlekauff, H. R. (1994). Complex heart rate variability, and serum norepinephrine levels in patients with advanced heart failure. Journal of the American College of Cardiology, 23, 565–569. https://doi.org/10.1016/0735-1097(94)90737-4.

    Article  Google Scholar 

  13. Brouwer, J., van Veldhuisen, D. J., Man in ’t Veld, A. J., Haaksma, J., Dijk, W. A., Visser, K. R., Boomsma, F., et al. (1996). Prognostic value of heart rate variability during long-term follow-up in patients with mild to moderate heart failure. The Dutch Ibopamine Multicenter Trial Study Group. Journal of the American College of Cardiology, 28, 1183–1190 (1996). https://doi.org/10.1016/s0735-1097(96)00279-3.

  14. Henriques, T. S., Mariani, S., Burykin, A., Rodrigues, F., Silva, T. F., & Goldberger, A. L. (2016). Multiscale Poincaré plots for visualizing the structure of heartbeat time series. BMC Medical Informatics and Decision Making, 16, 1–7. https://doi.org/10.1186/s12911-016-0252-0.

    Article  Google Scholar 

  15. Marciano, F., Migaux, M. L., Acanfora, D., Furgi, G., & Rengo, F. (1994). Quantification of Poincaré’ maps for the evaluation of heart rate variability. Computers in Cardiology, 1994, 577–580. https://doi.org/10.1109/CIC.1994.470126.

  16. Tulppo, M. P., Mäkikallio, T. H., Takala, T. E., Seppanen, T., & Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Heart and Circulatory Physiology, 271, H244–H253. https://doi.org/10.1152/ajpheart.1996.271.1.H244.

    Article  Google Scholar 

  17. Mäkikallio, T. H. (1998). Analysis of heart rate dynamics by methods derived from nonlinear mathematics: clinical applicability and prognostic significance. Oulu University, Finland. http://jultika.oulu.fi/files/isbn9514250133.pdf.

  18. Brennan, M., Palaniswami, M., & Kamen, P. (2001) New insight into the relationship between Poincaré Plot geometry and linear measures of heart variability. In Proceedings of 23rd Annual Conference on IEEE/EMBS, pp. 1–4, Istanbul, TURKEY, October 25-28, 2001. https://apps.dtic.mil/dtic/tr/fulltext/u2/a411633.pdf.

  19. Brennan, M., Palaniswami, M., & Kamen., P. W. (2001). Do existing measures of Poincar plot geometry reflect nonlinear features of heart rate variability?. IEEE Transactions on Biomedical Engineering, 48(11), 342–347 (2001). https://doi.org/10.1109/10.959330.

  20. Karmakar, C., Khandoker, A. H., & Palaniswami, M. (2009). Complex correlation measure: A novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(17), 1–12. https://doi.org/10.1186/1475-925X-8-17.

    Article  Google Scholar 

  21. Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A., et al. (2012). A method for analyzing temporal patterns of variability of a time series from Poincaré plots. Journal of Applied Physiology, 113, 297–306. https://doi.org/10.1152/japplphysiol.01377.2010.

    Article  Google Scholar 

  22. Kitlas-Golinska, A. (2013). Poincaré Plots in analysis of selected biomedical signals. Studies in Logic, Grammar and Rhetoric, 35, 117–127 (2013). https://doi.org/10.2478/slgr-2013-0031.

  23. Gorban, A. N., & Zinovyev, A. Y. (2010). Principal graphs, and manifolds. In: E. S. Olivas, J. D., Guerra, M. Martinez-Sober, J. R Magdalena-Benedito, & A. J Serrano López (Eds.), Handbook of research on machine learning applications and trends: Algorithms, methods and techniques (2010), 28–59. https://doi.org/10.4018/978-1-60566-766-9.

  24. Rutkove, S. (2016). Examples of Electromyograms. Physionet, 2016, https://physionet.org/physiobank/database/emgdb/. Last accessed February 25, 2020.

  25. Golyandina, N., Nekrutkin, V., & Zhigiljavsky, A. A. (2001). Analysis of time series structure: SSA and related techniques. https://doi.org/10.1201/9780367801687.

  26. Korobeynikov, A. (2010). Computation- and space-efficient implementation of SSA. Statistics and Its Interface, 3, 357–368. https://doi.org/10.4310/SII.2010.v3.n3.a9.

    Article  MathSciNet  MATH  Google Scholar 

  27. Chuiko, G., Dvornik, O., Darnapuk, Y., Yaremchuk, O., Krainyk, Y., & Puzyrov, S. (2019). Computer processing of ambulatory blood pressure monitoring as multivariate data. In: Proceedings of 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH) (2019). https://doi.org/10.1109/MEMSTECH.2019.8817375.

  28. Smith, L. I. (2020). A tutorial on principal components analysis, pp. 1–26 (2002). http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/pca_tutorial.pdf. Last accessed February 21, 2020.

  29. Layton, W., & Sussman, M. (2020). Numerical linear algebra. University of Pittsburgh Pittsburgh, pp. 1–307 (2014).https://people.sc.fsu.edu/~jburkardt/classes/nla_2015/numerical_linear_algebra.pdf. Last accessed February 21, 2020.

  30. Piskorski, J., & Guzik, P. (2005). Filtering Poincaré plots. Computational Methods in Science and Technology, 11, 39–48 (2005). https://doi.org/10.12921/cmst.2005.11.01.39-48.

  31. Hansen, P. C. (1998). FIR filter representations of reduced-rank noise reduction. IEEE Transactions on Signal Processing, 46, 1737–1741. https://doi.org/10.1109/78.678511.

    Article  Google Scholar 

  32. Figueiredo, N., Georgieva, P., Lang, E. W., Santos, I. M., Teixeira, A. R., & Tomé, A. M. (2013). SSA of biomedical signals: A linear invariant systems approach. Statistics and Its Interface, 3, 345–355. https://doi.org/10.4310/sii.2010.v3.n3.a8.

    Article  MathSciNet  MATH  Google Scholar 

  33. Harris, T. J., & Yuan, H. (2010). Filtering and frequency interpretations of Singular Spectrum Analysis. Physics D Nonlinear Phenomena, 239, 1958–1967. https://doi.org/10.1016/j.physd.2010.07.005.

    Article  MathSciNet  MATH  Google Scholar 

  34. Patel, K., Rora, K. K., Singh, K., & Verma, S. (2013). Lazy wavelet transform based steganography in video. In 2013 International Conference on Communication Systems and Network Technologies, Gwalior, pp. 497–500 (2013). https://doi.org/10.1109/CSNT.2013.109.

  35. Starovoitov, V. V. (2017). Singular value decomposition in digital image analysis. Informatics, 2, 70–83 (2017). https://inf.grid.by/jour/article/viewFile/213/215. Last accessed March 1, 2020 (in Russian).

  36. Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme - Erste Mitteilung. Mathematische Annalen, 69, 331–371. https://doi.org/10.1007/BF01456326. (in German).

    Article  MathSciNet  MATH  Google Scholar 

  37. Dastourian, B., Dastourian, E., Dastourian, S., & Mahnaie, O. (2014). Discrete wavelet transforms of Haar’s wavelet. In International Journal of Science and Technological Research, 3(9), 247–251 (2014). http://www.ijstr.org/final-print/sep2014/Discrete-Wavelet-Transforms-Of-Haars-Wavelet-.pdf. Last accessed March 1, 2020.

  38. Huikuri, H. V., Mäkikallio, T. H., Peng, C. K., Goldberger, A. L., Hintze, U., & Møller, M. (2000). Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation, 101, 47–53. https://doi.org/10.1161/01.CIR.101.1.47.

    Article  Google Scholar 

  39. Voss, A., Schulz, S., Schroeder, R., Baumert, M., & Caminal, P. (2009). Methods derived from nonlinear dynamics for analyzing heart rate variability. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 367(1887), 277–296 (2009). 1https://doi.org/10.1098/rsta.2008.0232.

  40. de Carvalho, T. D., Pastre, C. M., de Godoy, M. F., Fereira, C., Pitta, F. O., de Abreu, L. C., et al. (2011). Fractal correlation property of heart rate variability in chronic obstructive pulmonary disease. International Journal of COPD, 6, 23–28. https://doi.org/10.2147/COPD.S15099.

    Article  Google Scholar 

  41. Gomes, R. L., Vanderlei, L. C. M., Garner, D. M., Vanderlei, F. M., & Valenti, V. E. (2017). Higuchi fractal analysis of heart rate variability is sensitive during recovery from exercise in physically active men. Med Express, 4, 1–8. https://doi.org/10.5935/medicalexpress.2017.02.03.

    Article  Google Scholar 

  42. Antônio, A .M. S., Cardoso, M. A., Carlos de Abreu, L., Raimundo, R. D., Fontes, A. M. G. G., Garcia da Silva, A., et al. (2014). Fractal dynamics of heart rate variability: A study in healthy subjects. Journal of Cardiovascular Disease, 2(3), 138–142 (2014). http://researchpub.org/journal/jcvd/number/vol2-no3/vol2-no3-3.pdf. Last accessed February 26, 2020.

  43. Chuiko, G .P., Dvornik, O. V., & Darnapuk, Y. S. (2018). Shape evolutions of Poincaré plots for electromyograms in data acquisition dynamics. In Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining and Processing (SMP 2018), p. 119–122 (2018). https://doi.org/10.1109/DSMP.2018.8478516.

  44. Chuiko, G., Dvornik, O., Yaremchuk, O., & Darnapuk, Y. (2019). Ambulatory blood pressure monitoring: Modeling and data mining. CEUR Workshop Proceedings, M. Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen (Aachen, Germany), 2516, pp. 85–95, (2019). http://ceur-ws.org/Vol-2516/paper6.pdf. Last accessed March 3, 2020

  45. Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636–638 (1967). https://doi.org/10.1126/science.156.3775.636

  46. Bourke, P. (2014). Box counting fractal dimension of volumetric data. http://paulbourke.net/fractals/cubecount. Last accessed February 29, 2020.

  47. O’Brien, E., Parati, G., Stergiou, G., Asmar, R., Beilin, L.. Bilo, G., Clement, D., et al. (2013). European Society of hypertension position paper on ambulatory blood pressure monitoring, Journal of Hypertension, 31(9), 1731–1768 (2013). https://doi.org/10.1097/HJH.0b013e328363e964.

  48. Ambulatory Blood Pressure Report, 29-Jun-2005, QRS \(^{\textregistered }\)., ML 402. http://qrsdiagnostic.com/sites/default/files/Blood%20Pressure/ML402%20ABPM%20Sample%20Report.pdf.

  49. Albisser, A. M., Alejandro, R., Meneghini, L. F., & Ricordi, C. (2005). How good is your glucose control? Diabetes Technology & Therapeutics, 7, 863–875 (2005). https://doi.org/10.1089/dia.2005.7.863.

  50. Crenier, L. (2014). Poincaré plot quantification for assessing glucose variability from continuous glucose monitoring systems and a new risk marker for hypoglycemia: application to type 1 diabetes patients switching to continuous subcutaneous insulin infusion. Diabetes Technology & Therapeutics, 16, 247–254. https://doi.org/10.1089/dia.2013.0241.

    Article  Google Scholar 

  51. Chuiko, G. P., Dvornik, O. V., & Darnapuk, Ye. S. (2019). Combined processing of blood glucose self-monitoring. Medical Informatics & Engineering, 3, 59–68. https://doi.org/10.11603/mie.1996-1960.2019.3.10433.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Chuiko .

Editor information

Editors and Affiliations

Ethics declarations

No part of this investigation has a conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chuiko, G., Dvornik, O., Darnapuk, Y., Krainyk, Y. (2021). Principal Component Analysis, Quantifying, and Filtering of Poincaré Plots for time series typal for E-health. In: Patgiri, R., Biswas, A., Roy, P. (eds) Health Informatics: A Computational Perspective in Healthcare. Studies in Computational Intelligence, vol 932. Springer, Singapore. https://doi.org/10.1007/978-981-15-9735-0_4

Download citation

Publish with us

Policies and ethics