Skip to main content

Low-Speed Injection Attack Detection on CAN Bus

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1286))

Included in the following conference series:

Abstract

The car CAN (Controller Area Network) bus message injection attacks seriously affects various functions of the safety of cars, life and property. However, low-speed injection attack is detection inconspicuous in a majority of existing researches. This paper proposes a self-contained low-speed injection attacks detection system including whole detection process and principle. This paper first analyzes the feasibility of low-speed injection attacks; then we propose to use LOF (Local Outlier Factor) to detect the injection attack, and compare with the previous detection algorithms. Experimental results show that our algorithm has obvious advantages in detection rate over the previous algorithms.

Supported by NSFC: The United Foundation of General Technology and Fundamental Research (No. U1536122), the General Project of Tianjin Municipal Science and Technology Commission under Grant (No. 15JCYBJC15600), and the Major Project of Tianjin Municipal Science and Technology Commission under Grant (No. 15ZXDSGX00030).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malik, K.R., Ahmad, M., Khalid, S., Ahmad, H., Jabbar, S.: Image and command hybrid model for vehicle control using Internet of Vehicles. Trans. Emerg. Telecommun. Technol. 31(5), e3774 (2020)

    Google Scholar 

  2. Sajjad, M., et al.: CNN-based anti-spoofing two-tier multi-factor authentication system. Pattern Recogn. Lett. 126, 123–131 (2019)

    Article  Google Scholar 

  3. Chen, C., Liu, X., Qiu, T., Sangaiah, A.K.: A short-term traffic prediction model in the vehicular cyber-physical systems. Future Gener. Comput. Syst. 105, 894–903 (2020)

    Article  Google Scholar 

  4. Aloqaily, M., Otoum, S., Al Ridhawi, I., Jararweh, Y.: An intrusion detection system for connected vehicles in smart cities. Ad Hoc Netw. 90, 101842 (2019)

    Article  Google Scholar 

  5. Al Ridhawi, I., Otoum, S., Aloqaily, M., Jararweh, Y., Baker, T.: Providing secure and reliable communication for next generation networks in smart cities. Sustain. Cities Soc. 56, 102080 (2020)

    Article  Google Scholar 

  6. Lv, Z., Mazurczyk, W., Wendzel, S., Song, H.: Recent advances in cyber-physical security in industrial environments. IEEE Trans. Ind. Inf. 15(12), 6468–6471 (2019)

    Article  Google Scholar 

  7. Shin, K.G., Cho, K.T.: Fingerprinting electronic control units for vehicle intrusion detection. In: 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA (2019)

    Google Scholar 

  8. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. In: 2016 International Conference on Information Networking (ICOIN), pp. 63–68. IEEE, Kota Kinabalu (2016)

    Google Scholar 

  9. Gmiden, M., Gmiden, M.H., Trabelsi, H.: An intrusion detection method for securing in-vehicle CAN bus. In: 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 176–180. IEEE, Sousse (2016)

    Google Scholar 

  10. Taylor, A., Sylvain L., Nathalie J.: Anomaly detection in automobile control network data with long short-term memory networks. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 130–139. IEEE, Montreal (2016)

    Google Scholar 

  11. Ullah, F., Naeem, H., Jabbar, S., Khalid, S., Mostarda, L.: Cyber security threats detection in internet of things using deep learning approach. IEEE Access 7, 124379–124389 (2019)

    Article  Google Scholar 

  12. Amrollahi, M., Hadayeghparast, S., Karimipour, H., Derakhshan, F., Srivastava, G.: Enhancing network security via machine learning: opportunities and challenges. In: Choo, K.-K.R., Dehghantanha, A. (eds.) Handbook of Big Data Privacy, pp. 165–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38557-6_8

    Chapter  Google Scholar 

  13. Mohammadi Rouzbahani, H., Karimipour, H., Rahimnejad, A., Dehghantanha, A., Srivastava, G.: Anomaly detection in cyber-physical systems using machine learning. In: Choo, K.-K.R., Dehghantanha, A. (eds.) Handbook of Big Data Privacy, pp. 219–235. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38557-6_10

    Chapter  Google Scholar 

  14. Skowron, M., Artur, J., Wojciech, M.: Traffic fingerprinting attacks on internet of things using machine learning. IEEE Access 7, 20386–20400 (2020)

    Article  Google Scholar 

  15. Min-Joo, K., Je-Won, K., Tieqiao, T.: Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 11(6), e0155781 (2016)

    Article  Google Scholar 

  16. Tian, D., et al.: An intrusion detection system based on machine learning for CAN-bus. In: Chen, Y., Duong, T.Q. (eds.) INISCOM 2017. LNICST, vol. 221, pp. 285–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74176-5_25

    Chapter  Google Scholar 

  17. Markovitz, M., Avishai, W.: Field classification, modeling and anomaly detection in unknown CAN bus networks. Veh. Commun. 9, 43–52 (2017)

    Google Scholar 

  18. Cho, K.T., Kang, G.S.: Viden: attacker identification on in-vehicle networks. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 815–828. ACM, Dallas (2017)

    Google Scholar 

  19. Marchetti, M., Dario S.: Anomaly detection of CAN bus messages through analysis of ID sequences. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1577–1583. IEEE, Los Angeles (2017)

    Google Scholar 

  20. Marchetti, M., Stabili, D., Guido, A., Colajanni, M.: Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 1–6. IEEE, Bologna (2016)

    Google Scholar 

  21. Cho, K.T., Kang G.S.: Error handling of in-vehicle networks makes them vulnerable. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1044–1055. ACM, Vienna (2016)

    Google Scholar 

  22. TU-CRRC. http://tucrrc.utulsa.edu/Publications.html. Accessed 3 Apr 2019

  23. Breunig, M.M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104. ACM, Dallas (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Li, C., An, T., Cheng, X. (2020). Low-Speed Injection Attack Detection on CAN Bus. In: Xu, G., Liang, K., Su, C. (eds) Frontiers in Cyber Security. FCS 2020. Communications in Computer and Information Science, vol 1286. Springer, Singapore. https://doi.org/10.1007/978-981-15-9739-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9739-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9738-1

  • Online ISBN: 978-981-15-9739-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics