Abstract
Maximization of non-negative monotone submodular set functions under a knapsack constraint have been extensively studied in the last decade. Here, we consider the streaming algorithms of this problem on the integer lattice, or on a multi-set equivalently. This is more realistic for many practical problems such as sensor location and influence maximization. It is well known that submodularity and diminishing return submodularity are not equivalent on the integer lattice. We mainly focus on maximizing the diminishing return submodular (DR-submodular) functions with knapsack constraint on the integer lattice. Finally, by utilizing the binary search algorithm as a subroutine, we design an online streaming algorithm called DynamicMRT. Furthermore, we prove that it is a \((1/3-\varepsilon )\)-approximation algorithm with \(O(K\log K)\) memory complexity and \(O(\log K)\) query complexity per element.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of KDD, pp. 671–680 (2014)
Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with preemption. In: Proceedings of SODA, pp. 1202–1216 (2015)
Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel running time for submodular maximization without loss in approximation. In: Proceedings of SODA, pp. 283–302 (2019)
C\(\breve{a}\)linescu, G., Chekuri, C., P\(\acute{a}\)l, M., Vondr\(\acute{a}\)k, J.: Maximizing a momotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)
Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings, matroids, and more. Math. Program. 154, 225–247 (2015)
Chekuri, C., Quanrud, K.: Submodular function maximization in parallel via the multilinear relaxation. In: Proceedings of SODA, pp. 303–322 (2019)
Chekuri, C., Quanrud, K.: Randomize MWU for positive LPs. In: Proceedings of SODA, pp. 358–377 (2018)
Das, A., Kempe, D.: Algorithms for subset selection in linear regression. In: Proceedings of STC, pp. 45–54 (2008)
Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of ICML, pp. 1057–1064 (2011)
EI-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific literature. In: Proceedings of ICKDDM, pp. 439–447 (2011)
Ene, A., Nguyen, H.L.: Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time. In: Proceedings of SODA, pp. 274–282 (2019)
Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximization with matroid constraints. J. Global Optim. 75, 833–849 (2019)
Huang, C., Kakimura, N.: Improved streaming algorithms for maximising monotone submodular functions under a knapsack constraint. In: Proceedings of WADS, pp. 438–451 (2019)
Jiang, Y.J., Wang, Y.S., Xu, D.C., Yang, R.Q., Zhang, Y.: Streaming algorithm for maximizing a monotone non-submodular function under d-knapsack constraint. Optim. Lett. 14(5), 1235–1248 (2020)
Kapralov, M., Post, I., Vondr\(\acute{a}\)k, J.: Online submodular welfare maximization: greedy is optimal. In: Proceedings of SODA, pp. 1216–1225 (2012)
Khanna, R., Elenberg, E.R., Dimakis, A.G., Negahban, S., Ghosh, J.: Scalable greedy feature selection via weak submodularity. In: Proceedings of ICAIS, pp. 1560–1568 (2017)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Math. Program. 14, 265–294 (1978)
Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svensson, O. Beyong \(1/2\)-approximation for submodular maximization on massive data streams. In: Proceedings of ICML, pp. 3829–3838 (2018)
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)
Shioura, A.: On the Pipage rounding algorithm for submodular function maximization-a view from discrete convex analysis. Discrete Math. Algorithms Appl. 1(1), 1–23 (2009)
Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation: theoretical guarantee and efficient algorithm. In: Proceedings of ICML, pp. 351–359 (2014)
Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing return property on the integer lattice. In: Proceedings of NIPS, pp. 847–855 (2014)
Soma, T., Yoshida, Y.: Maximization monotone submodular functions over the integer lattice. Math. Program. 172, 539–563 (2018)
Wolsey, L.: Maximising real-valued submodular set function: primal and dual heuristics for location problems. Math. Oper. Res. 7(3), 410–425 (1982)
Wang, Y.J., Xu, D.C., Wang, Y.S., Zhang, D.M.: Non-submodular maximization on massive data streams. J. Global Optim. 76(4), 729–743 (2020)
Yu, Q., Xu, E., Cui, S.: Streaming algorithms for news and scientific literature recommendation: submodular maximization with a d-knapsack constraint. In: Proceedings of IEEE GCSI (2016)
Yang, R.Q., Xu, D.C., Jiang, Y.J., Wang, Y.S., Zhang, D.M.: Approximation robust parameterized submodular function maximaization in large-scales. Asia Pacific J. Oper. Res. 36(4), 195–220 (2019)
Acknowledgements
The first author is supported by Natural Science Foundation of Shandong Province (Nos. ZR2017LA002, ZR2019MA022), and Doctoral research foundation of Weifang University (No. 2017BS02). The second author is supported by National Natural Science Foundation of China (No. 11871081). The fourth author is supported by National Natural Science Foundation of China (No. 12001025) and Science and Technology Program of Beijing Education Commission (No. KM201810005006).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tan, J., Zhang, D., Zhang, H., Zhang, Z. (2021). Streaming Algorithms for Monotone DR-Submodular Maximization Under a Knapsack Constraint on the Integer Lattice. In: Ning, L., Chau, V., Lau, F. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2020. Communications in Computer and Information Science, vol 1362. Springer, Singapore. https://doi.org/10.1007/978-981-16-0010-4_6
Download citation
DOI: https://doi.org/10.1007/978-981-16-0010-4_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-0009-8
Online ISBN: 978-981-16-0010-4
eBook Packages: Computer ScienceComputer Science (R0)