Abstract
Physically Unclonable Functions (PUFs) are popular hardware-based security primitives that can derive chip signatures from the inherent characteristics of ICs. Due to their assumed security and cost advantages, one important category of PUFs, so-called weak PUFs which is used in numerous security applications such as device ID generation, IP protection and secure key storage. Nevertheless, a number of recent works have been reported several attacks on weak PUFs architectures. This paper presents a brief survey of existing attacks on silicon-based weak PUF architectures with their detailed comparison and associated countermeasures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amsaad, F., Choudhury, M., Chaudhuri, C.R., Niamat, M.: An innovative delay based algorithm to boost PUF security against machine learning attacks. In: 2016 Annual Connecticut Conference on Industrial Electronics, Technology Automation (CT-IETA), pp. 1–6, October 2016
Anagnostopoulos, N.A., Arul, T., Rosenstihl, M., Schaller, A., Gabmeyer, S., Katzenbeisser, S.: Low-temperature data remanence attacks against intrinsic SRAM PUFs. In: 2018 21st Euromicro Conference on Digital System Design (DSD), pp. 581–585. IEEE (2018)
Anandakumar, N.N., Hashmi, M.S., Sanadhya, S.K.: Efficient and lightweight FPGA-based hybrid PUFs with improved performance. Microprocess. Microsyst. 77, 103180 (2020)
Anderson, J.H.: A PUF design for secure FPGA-based embedded systems. In: 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 1–6, January 2010
Aniello, L., Halak, B., Chai, P., Dhall, R., Mihalea, M., Wilczynski, A.: Anti-BlUFf: towards counterfeit mitigation in IC supply chains using blockchain and PUF. Int. J. Inf. Secur. (2020)
Bai, C., Zou, X., Dai, K.: A novel thyristor-based silicon physical unclonable function. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(1), 290–300 (2016)
Becker, G.T., Kumar, R., et al.: Active and passive side-channel attacks on delay based PUF designs. IACR Cryptology ePrint Archive 2014, 287 (2014)
Bernardini, R., Rinaldo, R.: Making random permutations from physically unclonable constants. Int. J. Inf. Secur. 16(3), 249–261 (2016). https://doi.org/10.1007/s10207-016-0324-2
Bossuet, L., Ngo, X.T., Cherif, Z., Fischer, V.: A PUF based on a transient effect ring oscillator and insensitive to locking phenomenon. IEEE Trans. Emerg. Topics Comput. 2(1), 30–36 (2014)
Cao, Y., Zhao, X., Ye, W., Han, Q., Pan, X.: A compact and low power RO PUF with high resilience to the EM side-channel attack and the SVM modelling attack of wireless sensor networks. Sensors 18, 322 (2018)
Cherif, Z., Danger, J., Guilley, S., Bossuet, L.: An easy-to-design PUF based on a single oscillator: the loop PUF. In: 15th Euromicro Conference on Digital System Design, pp. 156–162, September 2012
Chuang, K., et al.: Physically unclonable function using CMOS breakdown position. In: 2017 IEEE International Reliability Physics Symposium (IRPS), pp. 4C–1.1-4C-1.7, April 2017
Chuang, K.-H., Bury, E., Degraeve, R., Kaczer, B., Linten, D., Verbauwhede, I.: A physically unclonable function using soft oxide breakdown featuring 0% native BER and 51.8 fJ/bit in 40-nm CMOS. IEEE J. Solid-State Circ. 54(10), 2765–2776 (2019)
Das, J., Scott, K., Rajaram, S., Burgett, D., Bhanja, S.: MRAM PUF: a novel geometry based magnetic PUF with integrated CMOS. IEEE Trans. Nanotechnol. 14(3), 436–443 (2015)
Delvaux, J., Verbauwhede, I.: Fault injection modeling attacks on 65 nm arbiter and RO sum PUFs via environmental changes. IEEE Trans. Circuits Syst. I Regul. Pap. 61(6), 1701–1713 (2014)
Gao, M., Lai, K., Zhang, J., Qu, G., Cui, A., Zhou, Q.: Reliable and anti-cloning PUFs based on configurable ring Oscillators. In: 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 194–201, August 2015
Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.: Cloning physically unclonable functions. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 1–6, June 2013
Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)
Kim, M., Moon, D., Yoo, S., Lee, S., Choi, Y.: Investigation of physically unclonable functions using flash memory for integrated circuit authentication. IEEE Trans. Nanotechnol. 14(2), 384–389 (2015)
Koeberl, P., Koçabas, Ü., Sadeghi, A.: Memristor PUFs: a new generation of memory-based physically unclonable functions. In: Macii, E. (ed.) Design, Automation and Test in Europe, DATE 13, Grenoble, France, March 18–22, 2013, pp. 428–431. EDA Consortium, San Jose/ACM DL (2013)
Krishna, A.R., Narasimhan, S., Wang, X., Bhunia, S.: MECCA: a robust low-overhead PUF using embedded memory array. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 407–420. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_27
Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-Ja., Tuyls, P.: The butterfly PUF protecting IP on every FPGA. In: 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 67–70. IEEE (2008)
Lohrke, H., Tajik, S., Boit, C., Seifert, J.-P.: No place to hide: contactless probing of secret data on FPGAs. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_8
Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable devices. In: 3rd Benelux Workshop Information and System Security, p. 17 (2008)
Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Combined Modeling and Side Channel Attacks on Strong PUFs. IACR Cryptology ePrint Archive 2013, 632 (2013)
Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., Sigl, G.: Localized electromagnetic analysis of RO PUFs. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 19–24. IEEE (2013)
Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FPGA RO PUFs and countermeasures. In: Proceedings of the Workshop on Embedded Systems Security, p. 2. ACM (2011)
Miskelly, J., Gu, C., Ma, Q., Cui, Y., Liu, W., O’Neill, M.: Modelling attack analysis of configurable ring oscillator (CRO) PUF designs. In: 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), pp. 1–5, November 2018
Nalla Anandakumar, N.: SCA resistance analysis on FPGA implementations of sponge based MAC PHOTON. In: Bica, I., Naccache, D., Simion, E. (eds.) SECITC 2015. LNCS, vol. 9522, pp. 69–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27179-8_6
Nedospasov, D., Seifert, J., Helfmeier, C., Boit, C.: Invasive PUF analysis. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 30–38, August 2013
Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297(5589), 2026–2030 (2002)
Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 237–249. ACM (2010)
Sadana, S., Lele, A., Tsundus, S., Kumbhare, P., Ganguly, U.: A highly reliable and unbiased PUF based on differential OTP memory. IEEE Electron Device Lett. 39(8), 1159–1162 (2018)
Sahoo, D.P., Bag, A., Patranabis, S., Mukhopadhyay, D., Chakraborty, R.S.: Fault-tolerant implementations of physically unclonable functions on FPGA. In: Chakraborty, R.S., Mathew, J., Vasilakos, A.V. (eds.) Security and Fault Tolerance in Internet of Things. IT, pp. 129–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02807-7_7
Santikellur, P., Bhattacharyay, A., Chakraborty, R.S.: Deep learning based model building attacks on arbiter PUF compositions. IACR Cryptology ePrint Archive 2019, 566 (2019)
Schaller, A., et al.: Intrinsic Rowhammer PUFs: leveraging the Rowhammer effect for improved security. In: 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 1–7, May 2017
Su, Y., Holleman, J., Otis, B.: A 1.6pJ/bit 96 % stable chip-ID generating circuit using process variations. In: 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (2007)
Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference, pp. 9–14. IEEE (2007)
Tajik, S., Nedospasov, D., Helfmeier, C., Seifert, J., Boit, C.: Emission analysis of hardware implementations. In: 2014 17th Euromicro Conference on Digital System Design, pp. 528–534, August 2014
Tajik, S., Lohrke, H., Ganji, F., Seifert, J.P., Boit, C.: Laser fault attack on physically unclonable functions. In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 85–96 (2015)
Tebelmann, L., Danger, J.L., Pehl, M.: Self-secured PUF: protecting the loop PUF by masking. Cryptology ePrint Archive, Report 2020/145 (2020). https://eprint.iacr.org/2020/145
Tebelmann, L., Pehl, M., Immler, V.: Side-channel analysis of the TERO PUF. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 43–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_4
Tehranipoor, F., Karimian, N., Yan, W., Chandy, J.A.: DRAM-based intrinsic physically unclonable functions for system-level security and authentication. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(3), 1085–1097 (2017)
Yamamoto, D., Sakiyama, K., Iwamoto, M., Ohta, K., Takenaka, M., Itoh, K.: Variety enhancement of PUF responses using the locations of random outputting RS latches. J. Cryptogr. Eng. 3(4), 197–211 (2012). https://doi.org/10.1007/s13389-012-0044-0
Yao, Y., Kim, M., Li, J., Markov, I.L., Koushanfar, F.: ClockPUF: Physical Unclonable Functions based on clock networks. In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 422–427, March 2013
Zeitouni, S., Oren, Y., Wachsmann, C., Koeberl, P., Sadeghi, A.-R.: Remanence decay side-channel: the PUF case. IEEE Trans. Inf. Forensics Secur. 11(6), 1106–1116 (2015)
Zhang, J.-L., Qu, G., Lv, Y.-Q., Zhou, Q.: A survey on silicon PUFs and recent advances in ring oscillator PUFs. J. Comput. Sci. Technol. 29(4), 664–678 (2014). https://doi.org/10.1007/s11390-014-1458-1
Zhang, J., Wan, L.: CMOS: dynamic multi-key obfuscation structure for strong PUFs. CoRR abs/1806.02011 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yehoshuva, C., Raja Adhithan, R., Nalla Anandakumar, N. (2021). A Survey of Security Attacks on Silicon Based Weak PUF Architectures. In: Thampi, S.M., Wang, G., Rawat, D.B., Ko, R., Fan, CI. (eds) Security in Computing and Communications. SSCC 2020. Communications in Computer and Information Science, vol 1364. Springer, Singapore. https://doi.org/10.1007/978-981-16-0422-5_8
Download citation
DOI: https://doi.org/10.1007/978-981-16-0422-5_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-0421-8
Online ISBN: 978-981-16-0422-5
eBook Packages: Computer ScienceComputer Science (R0)