Skip to main content

Image Compressed Sensing Using Neural Architecture Search

  • Conference paper
  • First Online:
Big Data (BigData 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1320))

Included in the following conference series:

  • 957 Accesses

Abstract

Deep learning methods have been widely applied in image compressed sensing (CS) recently, which achieve a significant improvement to traditional reconstruction algorithms in both running speed and reconstruction quality. However, it is a time-consuming procedure even for an expert to efficiently design a high-performance network for image CS because of various combination of different kernel size and filter number in each layer. In this paper, a novel image CS framework named NAS-CSNet is presented by leveraging virtues from neural architecture search (NAS) technique. The NAS-CSNet includes a sampling network, an initial reconstruction network and a NAS-based reconstruction network, which are optimized jointly. In particular, the reconstruction network is automatically designed by searching from the search space without trials and errors by experts. Extensive experimental results demonstrate that our proposed method achieves the competitive performance compared with the state-of-the-art deep learning methods and numerically promotes the reconstruction accuracy considerably, showing the effectiveness of the proposed NAS-CSNet and the promise to further use of NAS in the CS field.

This paper is supported by National Key Research and Development Program of China under grant No. 2018YFB1003500, No. 2018YFB0204400 and No. 2017YFB1401202.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  2. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 12(52), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  3. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 9(346), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  4. Needell, D., Tropp, J.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 3(26), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  5. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  6. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 6(56), 2346–2356 (2008)

    Article  MathSciNet  Google Scholar 

  7. Wu, Y., Rosca, M., Lillicrap, T.: Deep compressed sensing. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6850–6860 (2019)

    Google Scholar 

  8. Lyu, C., Liu, Z., Yu, L.: Block-sparsity recovery via recurrent neural network. Signal Process. 154, 129–135 (2019)

    Article  Google Scholar 

  9. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: ReconNet: non-iterative reconstruction of images from compressively sensed measurements. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 449–458 (2016)

    Google Scholar 

  10. Shi, W., Jiang, F., Zhang, S., Zhao, D.: Deep networks for compressed image sensing. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 877–882. IEEE (2017)

    Google Scholar 

  11. Xu, K., Zhang, Z., Ren, F.: LAPRAN: a scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 491–507. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_30

    Chapter  Google Scholar 

  12. Shi, W., Jiang, F., Liu, S., Zhao, D.: Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 29, 375–388 (2019)

    Article  MathSciNet  Google Scholar 

  13. Shi, W., Jiang, F., Liu, S., Zhao, D.: Scalable convolutional neural network for image compressed sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12290–12299 (2019)

    Google Scholar 

  14. Ghiasi, G., Lin, T.-Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7036–7045 (2019)

    Google Scholar 

  15. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4780–4789 (2019)

    Google Scholar 

  16. Luong, M.T., Dohan, D., Yu, A.W., Le, Q.V., Zoph, B., Vasudevan, V.: Exploring neural architecture search for language tasks. In: 6th International Conference on Learning Representations, ICLR, May 2018

    Google Scholar 

  17. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2787–2794 (2018)

    Google Scholar 

  18. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via Lamarckian evolution. In: 7th International Conference on Learning Representations, ICLR, May 2019

    Google Scholar 

  19. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

  20. Liu, H., Karen Simonyan, C.F., Vinyals, O., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: 6th International Conference on Learning Representations, ICLR, May 2018

    Google Scholar 

  21. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: 5th International Conference on Learning Representations, ICLR, April 2017

    Google Scholar 

  22. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th International Conference on Learning Representations, ICLR, May 2019

    Google Scholar 

  23. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning, ICML, August 2017, pp. 2902–2911

    Google Scholar 

  24. Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427. ACM (2019)

    Google Scholar 

  25. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

    Google Scholar 

  26. Wang, F., He, X., Wang, Y., Yang, S.: Markov model and convergence analysis based on cuckoo search algorithm. Comput. Eng. 38(11), 180–185 (2012)

    Google Scholar 

  27. Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Phys. Rev. E 49(5), 4677–4683 (1994)

    Article  Google Scholar 

  28. Mousavi, A., Patel, A.B., Baraniuk, R.G.: A deep learning approach to structured signal recovery. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1336–1343. IEEE (2015)

    Google Scholar 

  29. Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, N., Wang, J., Qu, X., Xiao, J. (2021). Image Compressed Sensing Using Neural Architecture Search. In: Mei, H., et al. Big Data. BigData 2020. Communications in Computer and Information Science, vol 1320. Springer, Singapore. https://doi.org/10.1007/978-981-16-0705-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0705-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0704-2

  • Online ISBN: 978-981-16-0705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics