Skip to main content

An Ensemble Method for Efficient Classification of Skin Lesion from Dermoscopy Image

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1376))

Included in the following conference series:

  • 713 Accesses

Abstract

Nowadays, skin cancer is growing-up due to exposure to Ultraviolet (UV) radiation emanating from the sun light. Among several categories of skin lesion, melanoma is the most deadly cancerous kind. Diagnosing skin lesion in its early stage have a great chance to cure the disease. Researchers have proposed several computer-aided diagnosis techniques to detect skin lesions. In this work, we present an ensemble model to classify skin lesion using a pre-trained DenseNet and InceptionV3 algorithms. The fully layered fine-tuned technique is applied to both the algorithms which are previously explored for ImageNet dataset. The fine-tuned algorithms are utilized to train on the HAM10000 dataset. The classification results obtained due to the pre-trained models are concatenated in the average ensemble method. The experimentation on the standard datasets confirm the classification accuracy of 91% and indicates that the proposed approach is a promising as compared to the previously developed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO: Skin cancers WHO (2017)

    Google Scholar 

  2. Narayanan, D.L., Saladi, R.N., Fox, J.L.: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 49(9), 978–986 (2010)

    Article  Google Scholar 

  3. Parkin, D., Mesher, D., Sasieni, P.: 13 cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Br. J. Cancer 105(2), S66–S69 (2011)

    Article  Google Scholar 

  4. Chaturvedi, S.S., Gupta, K., Prasad, P., et al.: Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using MobileNet. arXiv preprint arXiv:190703220 (2019)

  5. Ratul, A.R., Mozaffari, M.H., Lee, W.S., Parimbelli, E.: Skin lesions classification using deep learning based on dilated convolution, bioRxiv, p. 860700 (2019)

    Google Scholar 

  6. Gandhi, S.A., Kampp, J.: Skin cancer epidemiology, detection, and management, medical. Clinics 99(6), 1323–1335 (2015)

    Google Scholar 

  7. Damsky, W., Bosenberg, M.: Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 36(42), 5771–5792 (2017)

    Article  Google Scholar 

  8. Rogers, H.W., Weinstock, M.A., Feldman, S.R., Coldiron, B.M.: Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol. 151(10), 1081–1086 (2015)

    Article  Google Scholar 

  9. Thörn, M., Ponté, F., Bergström, R., Sparén, P., Adami, H.O.: Clinical and histopathologic predictors of survival in patients with malignant melanoma: a population-based study in Sweden. JNCI: J. Natl. Cancer Inst. 86(10), 761–769 (1994)

    Article  Google Scholar 

  10. Binder, M., Schwarz, M., Winkler, A., Steiner, A., Kaider, A., Wolff, K., et al.: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch. Dermatol. 131(3), 286–291 (1995)

    Article  Google Scholar 

  11. Gachon, J., Beaulieu, P., Sei, J.F., Gouvernet, J., Claudel, J.P., Lemaitre, M., et al.: First prospective study of the recognition process of melanoma in dermatological practice. Arch. Dermatol. 141(4), 434–438 (2005)

    Article  Google Scholar 

  12. Morton, C., Mackie, R.: Clinical accuracy of the diagnosis of cutaneous malignant melanoma. Br. J. Dermatol. 138(2), 283–287 (1998)

    Article  Google Scholar 

  13. Pratiwi, R.A., Nurmaini, S., Rini, D.P.: Skin lesion classification based on convolutional neural networks. Comput. Eng. Appl. J. 8(3), 203–216 (2019)

    Google Scholar 

  14. Barata, C., Ruela, M., Francisco, M., Mendonça, T., Marques, J.S.: Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst. J. 8(3), 965–979 (2013)

    Article  Google Scholar 

  15. Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 118–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_15

    Chapter  Google Scholar 

  16. Cıcero, F.M., Oliveira, A.H.M., Botelho, G.M., da Computaçao, C.D.C.: Deep learning and convolutional neural networks in the aid of the classification of melanoma. In: Conference on Graphics, Patterns and Images, SIBGRAPI (2016)

    Google Scholar 

  17. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  18. Lopez, A.R., Giro-i Nieto, X., Burdick, J., Marques, O.: Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), pp. 49–54. IEEE (2017)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  20. Codella, N.C., Nguyen, Q.B., Pankanti, S., Gutman, D.A., Helba, B., Halpern, A.C., et al.: Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 61(4/5), 1–5 (2017)

    Article  Google Scholar 

  21. Harangi, B.: Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 86, 25–32 (2018)

    Article  Google Scholar 

  22. Tan, T.Y., Zhang, L., Neoh, S.C., Lim, C.P.: Intelligent skin cancer detection using enhanced particle swarm optimization. Knowl.-Based Syst. 158, 118–135 (2018)

    Article  Google Scholar 

  23. Hekler, A., Utikal, J.S., Enk, A.H., Berking, C., Klode, J., Schadendorf, D., et al.: Pathologist level classification of histopathological melanoma images with deep neural networks. Eur. J. Cancer 115, 79–83 (2019)

    Article  Google Scholar 

  24. Khan, M.A., Javed, M.Y., Sharif, M., Saba, T., Rehman, A.: Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 International Conference on Computer and Information Sciences (ICCIS), pp. 1–7. IEEE (2019)

    Google Scholar 

  25. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multisource dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 161–180 (2018)

    Article  Google Scholar 

  26. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  27. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  30. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 (2014)

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  33. Zhang, J., Lu, C., Li, X., Kim, H.J., Wang, J.: A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng. 16(5), 3345–3367 (2019)

    Article  Google Scholar 

  34. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167 (2015)

  35. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  36. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.: Tensorflow: large scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:160304467 (2016)

  37. Shahin, A.H., Kamal, A., Elattar, M.A.: Deep ensemble learning for skin lesion classification from dermoscopic images. In: 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), pp. 150–153. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shekar, B.H., Hailu, H. (2021). An Ensemble Method for Efficient Classification of Skin Lesion from Dermoscopy Image. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1376. Springer, Singapore. https://doi.org/10.1007/978-981-16-1086-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1086-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1085-1

  • Online ISBN: 978-981-16-1086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics