Skip to main content

DarkGAN: Night Image Enhancement Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

Low light image enhancement is one of the challenging tasks in computer vision, and it becomes more difficult when images are very dark. Recently, most of low light image enhancement work is done either on synthetic data or on the images which are considerably visible. In this paper, we propose a method to enhance real-world night time images, which are dark and noisy. The proposed DarkGAN consists of two pairs of Generator - Discriminator. Moreover, the proposed network enhances dark shades and removes noise up to a much extent, with natural-looking colors in the output image. Experimental results evaluation of the proposed method on the “See In the Dark” dataset demonstrates the effectiveness of the proposed model compared with other state-of-the-art methods. The proposed method yields comparable better results on qualitative and quantitative assessments when compared with the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agostinelli, F., Anderson, M.R., Lee, H.: Adaptive multi-column deep neural networks with application to robust image denoising. In: Advances in Neural Information Processing Systems, pp. 1493–1501 (2013)

    Google Scholar 

  2. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392–2399. IEEE (2012)

    Google Scholar 

  3. Chaudhary, S., Murala, S.: Deep network for human action recognition using weber motion. Neurocomputing 367, 207–216 (2019)

    Article  Google Scholar 

  4. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  5. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  6. Dong, X., et al.: Fast efficient algorithm for enhancement of low lighting video. In: 2011 IEEE International Conference on Multimedia and Expo, pp. 1–6. IEEE (2011)

    Google Scholar 

  7. Dudhane, A., Biradar, K.M., Patil, P.W., Hambarde, P., Murala, S.: Varicolored image de-hazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4564–4573 (2020)

    Google Scholar 

  8. Dudhane, A., Hambarde, P., Patil, P., Murala, S.: Deep underwater image restoration and beyond. IEEE Signal Process. Lett. 27, 675–679 (2020)

    Article  Google Scholar 

  9. Dudhane, A., Murala, S.: RYF-Net: deep fusion network for single image haze removal. IEEE Trans. Image Process. 29, 628–640 (2019)

    Article  MathSciNet  Google Scholar 

  10. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  Google Scholar 

  13. Hambarde, P., Dudhane, A., Murala, S.: Single image depth estimation using deep adversarial training. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 989–993. IEEE (2019)

    Google Scholar 

  14. Hambarde, P., Dudhane, A., Patil, P.W., Murala, S., Dhall, A.: Depth estimation from single image and semantic prior. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1441–1445. IEEE (2020)

    Google Scholar 

  15. Hambarde, P., Murala, S.: S2DNet: depth estimation from single image and sparse samples. IEEE Trans. Comput. Imaging 6, 806–817 (2020)

    Google Scholar 

  16. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  19. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, pp. 769–776 (2009)

    Google Scholar 

  20. Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. arXiv preprint arXiv:1906.06972 (2019)

  21. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Google Scholar 

  22. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Google Scholar 

  23. Kuang, H., Chen, L., Chan, L.L.H., Cheung, R.C., Yan, H.: Feature selection based on tensor decomposition and object proposal for night-time multiclass vehicle detection. IEEE Trans. Syst. Man Cybern. Syst. 49(1), 71–80 (2018)

    Article  Google Scholar 

  24. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  25. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  Google Scholar 

  26. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  27. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  28. Pizer, S.M.: Contrast-limited adaptive histogram equalization: speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group. In: Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, Georgia, 22–25 May 1990. p. 337. IEEE Computer Society Press (1990)

    Google Scholar 

  29. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  30. Wang, Y.F., Liu, H.M., Fu, Z.W.: Low-light image enhancement via the absorption light scattering model. IEEE Trans. Image Process. 28(11), 5679–5690 (2019)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  33. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

    Google Scholar 

  34. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasen Alaspure .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1312 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alaspure, P., Hambarde, P., Dudhane, A., Murala, S. (2021). DarkGAN: Night Image Enhancement Using Generative Adversarial Networks. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1376. Springer, Singapore. https://doi.org/10.1007/978-981-16-1086-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1086-8_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1085-1

  • Online ISBN: 978-981-16-1086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics