Skip to main content

Feature Selection and Feature Manifold for Age Estimation

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

In recent years, a number of manifold learning techniques have been proposed in the literature to address the age estimation problem. In manifold methods, appearance features are projected onto a discriminant aging subspace and the age estimation is performed on the aging subspace. In these methods the manifold is learn from the gray intensity images. We propose a feature based discriminant manifold learning and feature selection scheme for robust age estimation. This paper also presents an experimental analysis of the manifold learning and feature selection schemes for age estimation. The exact age value is estimated by applying regression on the resultant feature vector. Experimental analysis on a large scale aging database MORPH-II, demonstrate the effectiveness of the proposed scheme.

Supported by Visvesvaraya National Institute of Technology, Nagpur, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, D., He, X., Han, J., Zhang, H.J.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608–3614 (2006)

    Article  Google Scholar 

  2. Chang, K.Y., Chen, C.S.: A learning framework for age rank estimation based on face images with scattering transform. IEEE Trans. Image Process. 24(3), 785–798 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chang, K.Y., Chen, C.S., Hung, Y.P.: A ranking approach for human ages estimation based on face images. In: 2010 20th International Conference on Pattern Recognition, pp. 3396–3399. IEEE (2010)

    Google Scholar 

  4. Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 585–592. IEEE (2011)

    Google Scholar 

  5. Chen, K., Gong, S., Xiang, T., Change Loy, C.: Cumulative attribute space for age and crowd density estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2467–2474 (2013)

    Google Scholar 

  6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  8. Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)

    Google Scholar 

  9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)

    MATH  Google Scholar 

  10. Fernández, C., Huerta, I., Prati, A.: A comparative evaluation of regression learning algorithms for facial age estimation. In: Ji, Q., B. Moeslund, T., Hua, G., Nasrollahi, K. (eds.) FFER 2014. LNCS, vol. 8912, pp. 133–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13737-7_12

    Chapter  Google Scholar 

  11. Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. Multimedia 10(4), 578–584 (2008)

    Article  Google Scholar 

  12. Fu, Y., Xu, Y., Huang, T.S.: Estimating human age by manifold analysis of face pictures and regression on aging features. In: 2007 IEEE International Conference on Multimedia and Expo, pp. 1383–1386. IEEE (2007)

    Google Scholar 

  13. Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  14. Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  15. Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.: Learning from facial aging patterns for automatic age estimation. In: Proceedings of the 14th ACM international conference on Multimedia, pp. 307–316. ACM (2006)

    Google Scholar 

  16. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008)

    Article  MathSciNet  Google Scholar 

  17. Guo, G., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: 2011 IEEE Conference on Computer Vision and Pattern recognition (CVPR), pp. 657–664. IEEE (2011)

    Google Scholar 

  18. Guo, G., Mu, G.: Joint estimation of age, gender and ethnicity: CCA vs. PLS. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)

    Google Scholar 

  19. Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 112–119. IEEE (2009)

    Google Scholar 

  20. Han, H., Otto, C., Jain, A.K.: Age estimation from face images: Human vs. machine performance. In: 2013 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2013)

    Google Scholar 

  21. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, pp. 153–160 (2004)

    Google Scholar 

  22. Huerta, I., Fernández, C., Prati, A.: Facial age estimation through the fusion of texture and local appearance descriptors. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 667–681. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_51

    Chapter  Google Scholar 

  23. Huerta, I., Fernández, C., Segura, C., Hernando, J., Prati, A.: A deep analysis on age estimation. Pattern Recogn. Lett. 68, 239–249 (2015)

    Article  Google Scholar 

  24. Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(1), 621–628 (2004)

    Google Scholar 

  25. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  26. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: A study of face recognition as people age. In: 2007 IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  27. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  28. Pontes, J.K., Britto Jr., A.S., Fookes, C., Koerich, A.L.: A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognit. 54, 34–51 (2016)

    Article  Google Scholar 

  29. Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: 2006 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 341–345. IEEE (2006)

    Google Scholar 

  30. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Google Scholar 

  31. Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. IEEE Trans. Cybern. 46(3), 827–839 (2015)

    Article  Google Scholar 

  32. Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. IEEE Trans. Cybern. 46(3), 827–839 (2016)

    Article  Google Scholar 

  33. Weng, R., Lu, J., Yang, G., Tan, Y.P.: Multi-feature ordinal ranking for facial age estimation. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)

    Google Scholar 

  34. Yi, D., Lei, Z., Li, S.Z.: Age estimation by multi-scale convolutional network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 144–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16811-1_10

    Chapter  Google Scholar 

  35. Zhang, Y., Yeung, D.Y.: Multi-task warped gaussian process for personalized age estimation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2622–2629. IEEE (2010)

    Google Scholar 

  36. Zhu, K., Gong, D., Li, Z., Tang, X.: Orthogonal gaussian process for automatic age estimation. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 857–860. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kshatriya, S., Sawant, M., Bhurchandi, K.M. (2021). Feature Selection and Feature Manifold for Age Estimation. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1092-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1091-2

  • Online ISBN: 978-981-16-1092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics