Abstract
In recent years, a number of manifold learning techniques have been proposed in the literature to address the age estimation problem. In manifold methods, appearance features are projected onto a discriminant aging subspace and the age estimation is performed on the aging subspace. In these methods the manifold is learn from the gray intensity images. We propose a feature based discriminant manifold learning and feature selection scheme for robust age estimation. This paper also presents an experimental analysis of the manifold learning and feature selection schemes for age estimation. The exact age value is estimated by applying regression on the resultant feature vector. Experimental analysis on a large scale aging database MORPH-II, demonstrate the effectiveness of the proposed scheme.
Supported by Visvesvaraya National Institute of Technology, Nagpur, India.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, D., He, X., Han, J., Zhang, H.J.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608–3614 (2006)
Chang, K.Y., Chen, C.S.: A learning framework for age rank estimation based on face images with scattering transform. IEEE Trans. Image Process. 24(3), 785–798 (2015)
Chang, K.Y., Chen, C.S., Hung, Y.P.: A ranking approach for human ages estimation based on face images. In: 2010 20th International Conference on Pattern Recognition, pp. 3396–3399. IEEE (2010)
Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 585–592. IEEE (2011)
Chen, K., Gong, S., Xiang, T., Change Loy, C.: Cumulative attribute space for age and crowd density estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2467–2474 (2013)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)
Fernández, C., Huerta, I., Prati, A.: A comparative evaluation of regression learning algorithms for facial age estimation. In: Ji, Q., B. Moeslund, T., Hua, G., Nasrollahi, K. (eds.) FFER 2014. LNCS, vol. 8912, pp. 133–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13737-7_12
Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. Multimedia 10(4), 578–584 (2008)
Fu, Y., Xu, Y., Huang, T.S.: Estimating human age by manifold analysis of face pictures and regression on aging features. In: 2007 IEEE International Conference on Multimedia and Expo, pp. 1383–1386. IEEE (2007)
Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)
Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007)
Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.: Learning from facial aging patterns for automatic age estimation. In: Proceedings of the 14th ACM international conference on Multimedia, pp. 307–316. ACM (2006)
Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008)
Guo, G., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: 2011 IEEE Conference on Computer Vision and Pattern recognition (CVPR), pp. 657–664. IEEE (2011)
Guo, G., Mu, G.: Joint estimation of age, gender and ethnicity: CCA vs. PLS. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)
Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 112–119. IEEE (2009)
Han, H., Otto, C., Jain, A.K.: Age estimation from face images: Human vs. machine performance. In: 2013 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2013)
He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, pp. 153–160 (2004)
Huerta, I., Fernández, C., Prati, A.: Facial age estimation through the fusion of texture and local appearance descriptors. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 667–681. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_51
Huerta, I., Fernández, C., Segura, C., Hernando, J., Prati, A.: A deep analysis on age estimation. Pattern Recogn. Lett. 68, 239–249 (2015)
Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(1), 621–628 (2004)
Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)
Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: A study of face recognition as people age. In: 2007 IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Pontes, J.K., Britto Jr., A.S., Fookes, C., Koerich, A.L.: A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognit. 54, 34–51 (2016)
Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: 2006 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 341–345. IEEE (2006)
Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. IEEE Trans. Cybern. 46(3), 827–839 (2015)
Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. IEEE Trans. Cybern. 46(3), 827–839 (2016)
Weng, R., Lu, J., Yang, G., Tan, Y.P.: Multi-feature ordinal ranking for facial age estimation. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)
Yi, D., Lei, Z., Li, S.Z.: Age estimation by multi-scale convolutional network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 144–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16811-1_10
Zhang, Y., Yeung, D.Y.: Multi-task warped gaussian process for personalized age estimation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2622–2629. IEEE (2010)
Zhu, K., Gong, D., Li, Z., Tang, X.: Orthogonal gaussian process for automatic age estimation. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 857–860. ACM (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kshatriya, S., Sawant, M., Bhurchandi, K.M. (2021). Feature Selection and Feature Manifold for Age Estimation. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_10
Download citation
DOI: https://doi.org/10.1007/978-981-16-1092-9_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1091-2
Online ISBN: 978-981-16-1092-9
eBook Packages: Computer ScienceComputer Science (R0)