Skip to main content

Dynamic User Interface Composition

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

With continuous innovation and a persistent attempt to achieve natural human machine interactions, user interfaces have evolved into the current phase of Voice User Interfaces. Voice User Interfaces augmented with visual information are becoming prominent in a variety of devices with different form-factors. Developing user interfaces for such a wide range of display configurations is a challenging task. This paper puts forward an approach to dynamically compositing such user interfaces without compromising on User Experience. This work examines details of devising a neural network model to automate user interface layout composition based on aesthetics and saliency. A 40000 dataset was created for this work with eight trained annotators. Ground truth is estimated from the above annotations using Expectation Maximization algorithm. Experiments show that users are highly satisfied with the model results. This model is deployed in Lock Screen auto layout available in latest Samsung Android phones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hassenzahl, M., Tractinsky, N.: User experience - a research agenda. Behav. Inf. Technol. 25(2), 91–97 (2006)

    Article  Google Scholar 

  2. Eisenstein, J., Vanderdonckt, J., Puerta A.: Adapting to mobile contexts with user-interface modeling. In: Proceedings Third IEEE Workshop on Mobile Computing Systems and Applications, pp. 83–92 (2000)

    Google Scholar 

  3. Weld, D., Anderson, C., Domingos, P., Etzioni, O., Gajos, K., Lau, T., Wolfman, S.: Automatically personalizing user interfaces. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 910–950, Acapulco, Mexico (2003)

    Google Scholar 

  4. Tractinsky, N.: The Encyclopedia of Human-Computer Interaction, 2nd Ed. (2016).

    Google Scholar 

  5. Here are all the Samsung Good Lock 2018 features and what they do https://www.androidauthority.com/samsung-good-lock-2018-878036/

  6. Gajos, K., Weld, D.: SUPPLE: automatically generating user interfaces. In: Proceedings of the 9th International Conference on Intelligent User Interfaces, pp. 93–100 (2004)

    Google Scholar 

  7. Nichols, J.: Automatically generating high-quality user interfaces for appliances. In: CHI ’03 Extended Abstracts on Human Factors in Computing Systems, pp. 624–625 (2003).

    Google Scholar 

  8. Duan, P., Wierzynski, C., Nachman, L.: Optimizing user interface layouts via gradient descent. In: CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, p. 12 NY, USA (2020)

    Google Scholar 

  9. Zheng, X., Qiao, X., Cao, Y., Lau, R.: Content-aware generative modeling of graphic design layouts. ACM Trans. Graph. 38(4), 1–5 (2019)

    Article  Google Scholar 

  10. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)

    Google Scholar 

  11. Bosse, S., Maniry, D., Wiegand, T., Samek, W.: A deep neural network for image quality assessment. In: ICIP, pp. 3773–3777 (2016)

    Google Scholar 

  12. Talebi, H., Milanfar, P.: Nima: Neural image assessment. TIP 27(8), 3998–4011 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Zhang, L., Shen, Y., Li, H.: VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  Google Scholar 

  14. Biancardi, A., Jirapatnakul, A., Reeves, A.: A comparison of ground truth estimation methods. In: International Journal of Computer Assisted Radiology and Surgery, pp. 295–305 (2010)

    Google Scholar 

  15. Raykar, V., et al.: Learning from crowds. J. Mach. Learn. Res. 11, 1297–1322 (2010)

    MathSciNet  Google Scholar 

  16. Whitehill, J., Wu, T., Bergsma, J., Movellan, J., Ruvolo, P.: Whose vote should count more: optimal integration of labels from labelers of unknown expertise. In: Advances in Neural Information Processing Systems, pp. 2035–2043 (2009)

    Google Scholar 

  17. Artstein, R., Poesio, M.: Inter-Coder Agreement for Computational Linguistics. In: Computational Linguistics, pp. 555–596 (2008).

    Google Scholar 

  18. App Widget Design Guidelines. https://developer.android.com/guide/practices/ui_guidelines/widget_design.htm

  19. Ivan, K., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija, S., Kuznetsova, A., Rom, H.: OpenImages: A public dataset for large-scale multi-label and multi-class image classification. Dataset: https://storage.googleapis.com/openimages/web/index.html (2017)

  20. Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  21. Mingxing, T., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Natarajan, S., Shariff, M.A.U., Mani, P.V. (2021). Dynamic User Interface Composition. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1092-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1091-2

  • Online ISBN: 978-981-16-1092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics