Abstract
Fashion image retrieval (FIR) is a challenging task, which involves similar item searching from a massive collection of fashion products based on a query image. FIR in different garments and shoes are popular in literature. More complex fashion products such as ornaments are getting less attention. Here, we introduce a new earring dataset, namely, RingFIR. The dataset is a collection of (\(\sim \)2.6K) high-quality images collected from major India based jewellery chains. The dataset is labelled in 46 classes in a structured manner. We have benchmarked the dataset using state-of-the-art image retrieval methods. We believe that the dataset is challenging and will attract computer vision researchers in the future. The dataset is available publicly (https://github.com/skarifahmed/RingFIR).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Long, F., Zhang, H., Feng, D.D.: Fundamentals of content-based image retrieval. In: Feng, D.D., Siu, W.C., Zhang, H.J. (eds.) Multimedia Information Retrieval and Management. Signals and Communication Technology, pp. 1–26. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05300-3_1
Yasmin, M., Mohsin, S., Sharif, M.: Intelligent image retrieval techniques: a survey. J. Appl. Res. Technol. 12(1), 87–103 (2014)
Lehmann, T.M., et al.: Content-based image retrieval in medical applications. Methods Inf. Med. 43(04), 354–361 (2004)
Sharma, P., Reilly, R.B.: A colour face image database for benchmarking of automatic face detection algorithms. In: Proceedings EC-VIP-MC 2003. 4th EURASIP Conference Focused on Video/Image Processing and Multimedia Communications (IEEE Cat. No. 03EX667), vol. 1, pp. 423–428. IEEE (2003)
da Silva Torres, R., Falcao, A.X.: Content-based image retrieval: theory and applications. RITA 13(2), 161–185 (2006)
Choraś, R.S.: Cbir system for detecting and blocking adult images. In: Proceedings of the 9th WSEAS International Conference on Signal Processing, pp. 52–57 (2010)
Corbiere, C., Ben-Younes, H., Ramé, A., Ollion, C.: Leveraging weakly annotated data for fashion image retrieval and label prediction. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2268–2274 (2017)
Hadi Kiapour, M., Han, X., Lazebnik, S., Berg, A.C., Berg, T.L.: Where to buy it: matching street clothing photos in online shops. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3343–3351 (2015)
Huang, J., Feris, R.S., Chen, Q., Yan, S.: Cross-domain image retrieval with a dual attribute-aware ranking network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1062–1070 (2015)
Bossard, L., Dantone, M., Leistner, C., Wengert, C., Quack, T., Van Gool, L.: Apparel classification with style. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part IV. LNCS, vol. 7727, pp. 321–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37447-0_25
Dong, Q., Gong, S., Zhu, X.: Multi-task curriculum transfer deep learning of clothing attributes. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 520–529. IEEE (2017)
Kalantidis, Y., Kennedy, L., Li, L.J.: Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 105–112 (2013)
Hu, Y., Yi, X., Davis, L.S.: Collaborative fashion recommendation: a functional tensor factorization approach. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 129–138 (2015)
Li, Y., Cao, L., Zhu, J., Luo, J.: Mining fashion outfit composition using an end-to-end deep learning approach on set data. IEEE Trans. Multimedia 19(8), 1946–1955 (2017)
Liu, S., et al.: Hi, magic closet, tell me what to wear! In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 619–628 (2012)
Park, S., Shin, M., Ham, S., Choe, S., Kang, Y.: Study on fashion image retrieval methods for efficient fashion visual search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1096–1104 (2016)
Ge, Y., Zhang, R., Wang, X., Tang, X., Luo, P.: DeepFashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. arXiv preprint arXiv:1901.07973 (2019)
Zhou, W., et al.: Fashion recommendations through cross-media information retrieval. J. Vis. Commun. Image Represent. 61, 112–120 (2019)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
Loni, B., Cheung, L.Y., Riegler, M., Bozzon, A., Gottlieb, L., Larson, M.: Fashion 10000: an enriched social image dataset for fashion and clothing. In: Proceedings of the 5th ACM Multimedia Systems Conference, pp. 41–46 (2014)
Zheng, S., Yang, F., Kiapour, M.H., Piramuthu, R.: ModaNet: a large-scale street fashion dataset with polygon annotations. In: ACM Multimedia Conference on Multimedia Conference, pp. 1670–1678. ACM (2018)
Chen, Q., Huang, J., Feris, R., Brown, L.M., Dong, J., Yan, S.: Deep domain adaptation for describing people based on fine-grained clothing attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5315–5324 (2015)
Vasileva, M.I., Plummer, B.A., Dusad, K., Rajpal, S., Kumar, R., Forsyth, D.: Learning type-aware embeddings for fashion compatibility. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, Part XVI. LNCS, vol. 11220, pp. 405–421. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_24
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)
Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44
Karu, K., Jain, A.K.: Fingerprint classification. Pattern Recogn. 29(3), 389–404 (1996)
Garcia, M.B., Revano, T.F., Habal, B.G.M., Contreras, J.O., Enriquez, J.B.R.: A pornographic image and video filtering application using optimized nudity recognition and detection algorithm. In: 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1–5. IEEE (2018)
Xinchen Liu, W., Liu, T.M., Ma, H.: PROVID: progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Trans. Multimedia 20(3), 645–658 (2017)
Han, X., Wu, Z., Jiang, Y.G., Davis, L.S.: Learning fashion compatibility with bidirectional LSTMs. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1078–1086 (2017)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: MNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE (2017)
Grgic, M., Delac, K., Grgic, S.: SCface-surveillance cameras face database. Multimedia Tools Appl. 51(3), 863–879 (2011)
Lou, Y., Bai, Y., Liu, J., Wang, S., Duan, L.: VERI-wild: a large dataset and a new method for vehicle re-identification in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3235–3243 (2019)
Monroe, M.E., Tolić, N., Jaitly, N., Shaw, J.L., Adkins, J.N., Smith, R.D.: Viper: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23(15), 2021–2023 (2007)
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)
Kinli, F., Ozcan, B., Kiraç, F.: Fashion image retrieval with capsule networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Lin, K., Yang, H.F., Liu, K.H., Hsiao, J.H., Chen, C.S.: Rapid clothing retrieval via deep learning of binary codes and hierarchical search. In: ACM International Conference on Multimedia Retrieval, pp. 499–502. ACM (2015)
Zhao, B., Feng, J., Wu, X., Yan, S.: Memory-augmented attribute manipulation networks for interactive fashion search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1520–1528 (2017)
Jetchev, N., Bergmann, U.: The conditional analogy GAN: swapping fashion articles on people images. In: IEEE International Conference on Computer Vision, pp. 2287–2292 (2017)
Wang, W., Xu, Y., Shen, J., Zhu, S.C.: Attentive fashion grammar network for fashion landmark detection and clothing category classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4271–4280 (2018)
Erkut, U., Bostancıoğlu, F., Erten, M., Özbayoğlu, A.M., Solak, E.: HSV color histogram based image retrieval with background elimination. In: 2019 1st International Informatics and Software Engineering Conference (UBMYK), pp. 1–5. IEEE (2019)
Liao, Q.: Comparison of several color histogram based retrieval algorithms. In: 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 1670–1673. IEEE (2016)
Ha, I., Kim, H., Park, S., Kim, H.: Image retrieval using BIM and features from pretrained VGG network for indoor localization. Build. Environ. 140, 23–31 (2018)
Pelka, O., Nensa, F., Friedrich, C.M.: Annotation of enhanced radiographs for medical image retrieval with deep convolutional neural networks. PLoS One 13(11), e0206229 (2018)
Zhang, J., Chaoquan, L., Li, X., Kim, H.-J., Wang, J.: A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng 16(5), 3345–3367 (2019)
Saxen, F., Werner, P., Handrich, S., Othman, E., Dinges, L., Al-Hamadi, A.: Face attribute detection with mobilenetv2 and NasNet-mobile. In: 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 176–180. IEEE (2019)
Ilhan, H.O., Sigirci, I.O., Serbes, G., Aydin, N.: A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Med. Biol. Eng. Comput. 58(5), 1047–1068 (2020). https://doi.org/10.1007/s11517-019-02101-y
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Islam, S.M., Joardar, S., Sekh, A.A. (2021). RingFIR: A Large Volume Earring Dataset for Fashion Image Retrieval. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_9
Download citation
DOI: https://doi.org/10.1007/978-981-16-1092-9_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1091-2
Online ISBN: 978-981-16-1092-9
eBook Packages: Computer ScienceComputer Science (R0)