Skip to main content

Recognition of Adavus in Bharatanatyam Dance

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

Digital heritage has been a challenging problem to preserve the cultural heritage like a dance. Digitization of dance requires systematic analyses and understanding the semantics. However, while several work has been reported in non-Indian Classical Dance (ICD); only few has been done in the ICD because of its complexity. Bharatanatyam is an important ICD form, and Adavus constitute the primary collections of postures and movements in Bharatanatyam. There are 15 classes of Adavus having 52 sub-classes between them. Adavus are the critical building blocks for Bharatanatyam and critical for understanding its artefacts and semantics. Hence, this paper attempts to recognize Adavus based on the sequence of Key Postures (KPs) that define and constitute them. Kinect captures dance performances. The videos are then manually segmented into sequences of Key Frames (KFs) corresponding to the expected KPs. For recognizing KP, we follow two approaches; a) skeleton videos and angles of skeleton bones as features, b) The HOG features from the RGB frames. In both approaches, we train SVMs and recognize the KPs using them. The classifier generated by SVM predicts the sequence of KPs involved in a given Adavu. Since KPs are the string-like encoding symbols of an Adavu, we use the predicted sequence and master sequence of KPs in Edit Distance to recognize the matching Adavu. We use a pre-existing annotated data set of Natta (with eight variants) and Mettu (with four variants) Adavus to achieve over 99% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An Adavu is a basic unit of Bharatanatyam performance which is used to train the dancers.

  2. 2.

    Momentarily stationary well-defined postures occurs within the Adavu.

  3. 3.

    Accompanying Sound Track of an Adavu.

  4. 4.

    An utterance, a mnemonic syllable in Sollukattu.

  5. 5.

    Basic unit of time in music.

  6. 6.

    Pace or speed at which a section of music is played.

  7. 7.

    To preserve the periodicity of the KPs, which must align with the beats, we need to proceed in an order and cannot arbitrarily associate any member KFs on the sub-sequence. That is, while 101–144–189–231 (first KF of each) is a valid sub-sequence, 125–146–195–259 is an invalid one as it would violate the beat periodicity.

  8. 8.

    These sequences, however, are highly correlated and cannot be used where strict independent inputs are needed.

  9. 9.

    Natta=23 classes, Mettu=32 classes.

References

  1. Aich, A., Mallick, T., Bhuyan, H.B.G.S., Das, P.P., Majumdar, A.K.: NrityaGuru: a dance tutoring system for Bharatanatyam using kinect. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds.) NCVPRIPG 2017. CCIS, vol. 841, pp. 481–493. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0020-2_42

    Chapter  Google Scholar 

  2. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1(Dec), 113–141 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Boukir, S., Cheneviere, F.: Compression and recognition of dance gestures using a deformable model. Pattern Anal. Appl. 7(3), 308–316 (2004)

    Article  MathSciNet  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  5. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)

    Article  Google Scholar 

  6. Dantone, M., Gall, J., Leistner, C., Van Gool, L.: Human pose estimation using body parts dependent joint regressors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3041–3048 (2013)

    Google Scholar 

  7. Guo, F., Qian, G.: Dance posture recognition using wide-baseline orthogonal stereo cameras. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 481–486. IEEE (2006)

    Google Scholar 

  8. Johnson, S., Everingham, M.: Learning effective human pose estimation from inaccurate annotation. In: 2011 IEEE conference on Computer vision and pattern recognition (CVPR), pp. 1465–1472. IEEE (2011)

    Google Scholar 

  9. Kahol, K., Tripathi, P., Panchanathan, S.: Automated gesture segmentation from dance sequences. In: 2004 Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 883–888. IEEE (2004)

    Google Scholar 

  10. Kale, G., Patil, V.: Bharatnatyam adavu recognition from depth data. In: 2015 Third International Conference on Image Information Processing (ICIIP), pp. 246–251. IEEE (2015)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  12. Mallick, T.: A framework for modeling, analysis and transcription of bharatanatyam dance performances. Ph.D. thesis, CSE, IIT Kharagpur, India (2017)

    Google Scholar 

  13. Mallick, T., Bhuyan, H., Das, P.P., Majumdar, A.K.: Annotated bharatanatyam data set, May 2017. http://hci.cse.iitkgp.ac.in

  14. Masurelle, A., Essid, S., Richard, G.: Multimodal classification of dance movements using body joint trajectories and step sounds. In: 2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), pp. 1–4. IEEE (2013)

    Google Scholar 

  15. Microsoft: Tracking users, with kinect skeletal tracking, November 2010. https://msdn.microsoft.com/en-us/library/hh438998.aspx

  16. Mohanty, A., et al.: Nrityabodha: towards understanding Indian classical dance using a deep learning approach. Signal Process.: Image Commun. 47, 529–548 (2016)

    Google Scholar 

  17. Naveda, L.A., Leman, M.: Representation of samba dance gestures, using a multi-modal analysis approach. In: Enactive 2008, pp. 68–74. Edizione ETS (2008)

    Google Scholar 

  18. Ning, H., Xu, W., Gong, Y., Huang, T.: Discriminative learning of visual words for 3D human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. Citeseer (2008)

    Google Scholar 

  19. Pohl, H., Hadjakos, A.: Dance pattern recognition using dynamic time warping. Sound Music Comput. 2010 (2010)

    Google Scholar 

  20. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  21. Reynolds, D.: Gaussian mixture models. Encycl. Biometr. 827–832 (2015)

    Google Scholar 

  22. Samanta, S., Purkait, P., Chanda, B.: Indian classical dance classification by learning dance pose bases. In: 2012 IEEE Workshop on the Applications of Computer Vision (WACV), pp. 265–270. IEEE (2012)

    Google Scholar 

  23. Sharma, A.: Recognising bharatanatyam dance sequences using RGB-D data. Ph.D. thesis, IIT Kanpur, India (2013)

    Google Scholar 

  24. Shiratori, T., Nakazawa, A., Ikeuchi, K.: Rhythmic motion analysis using motion capture and musical information. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI2003, pp. 89–94. IEEE (2003)

    Google Scholar 

  25. Shiratori, T., Nakazawa, A., Ikeuchi, K.: Detecting dance motion structure through music analysis. In: 2004 Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 857–862. IEEE (2004)

    Google Scholar 

  26. Tian, Y., Zitnick, C.L., Narasimhan, S.G.: Exploring the spatial hierarchy of mixture models for human pose estimation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 256–269. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhuyan, H., Das, P.P. (2021). Recognition of Adavus in Bharatanatyam Dance. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics