Skip to main content

Mars Surface Multi-decadal Change Detection Using ISRO’s Mars Color Camera (MCC) and Viking Orbiter Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1378))

Included in the following conference series:

Abstract

Mars is a dynamic and active planet in our solar system, which attracts humans due to different geological events continuously reshaping its surface. ISRO’s Mars Color Camera (MCC) onboard Mangalyaan spacecraft send more than thousand images of planet Mars at varying spatial resolution, which is of utmost importance for doing surface change detection over Mars. In this paper, we have described a methodology for automated change detection using MCC and Viking images having more than decade separation in image acquisition. The processing steps includes geometric transformation of Viking color image to the same size as MCC, image registration using SIFT based feature matching technique and automated change detection using multi-variate alteration detection (MAD). The workflow chain developed is tested in bi-temporal images from MCC and Viking having more than 20 years’ time span difference covering Esylum and Amentia quadrangles of Mars. The result shows the change detection map generated using MCC and Viking images, which focus the changing landscape of Mars due to wind streaks, dust deposits, landslides, lava flows and new impact craters formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moorthi, S.M., et al.: Mars orbiter mission: science data products and archive pipeline. In: 46th Lunar and Planetary Science Conference (2015)

    Google Scholar 

  2. Arya, A.S., et al.: Mars color camera onboard mars orbiter mission: initial observations & results. In: 46th Lunar and Planetary Science Conference (2015)

    Google Scholar 

  3. Roy, S., Dhar, D., Moorthi, S.M., Sarkar, S.S.: Comparative analysis of demosaicking techniques for mars colour camera data. In: IEEE International Conference on Contemporary Computing and Informatics (2014)

    Google Scholar 

  4. Mars Viking Global Color Mosaic 925 v1. https://astrogeology.usgs.gov/search/map/Mars/Viking/Color/Mars_Viking_ClrMosaic_global_925m. Accessed 05 Oct 2020

  5. Ritter, N., Ruth, M.: GeoTiff Format Specification Document (1995)

    Google Scholar 

  6. Misra, I., Moorthi, S.M., Dhar, D.: Techniques developed for large area mars image mosaic using ISRO’s mars color camera (MCC) data. Indian J. Geomat. 13(1), 174–179 (2019)

    Google Scholar 

  7. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE, November 2011

    Google Scholar 

  8. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  9. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  10. Kupfer, B., Netanyahu, N.S., Shimshoni, I.: An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images. IEEE Geosci. Remote Sens. Lett. 12(2), 379–383 (2014)

    Article  Google Scholar 

  11. Xin, X., Liu, B., Di, K., Jia, M., Oberst, J.: High-precision co-registration of orbiter imagery and digital elevation model constrained by both geometric and photometric information. ISPRS J. Photogramm. Remote. Sens. 144, 28–37 (2018)

    Article  Google Scholar 

  12. Misra, I., Sharma, V., Manthira Moorthi, S., Dhar, D.: An approach for generation of multi temporal co-registered optical remote sensing images from Resourcesat-2/2A sensors. Indian J. Geomat. 13(1), 174–179 (2019)

    Google Scholar 

  13. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

  14. Hotelling, H.: Relations between two sets of variates. York, Biometrika XXVIII, 321–377 (1936)

    Google Scholar 

  15. Canty, M.J., Nielsen, A.A., Schmidt, M.: Automatic radiometric normalization of multitemporal satellite imagery. Remote Sens. Environ. 3–4, 441–451 (2004)

    Article  Google Scholar 

  16. Nielsen, A.A., Conradsen, K., Simpson, J.J.: Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 64(1), 1–19 (1998)

    Article  Google Scholar 

  17. Deng, J.S., Wang, K., Deng, Y.H., Qi, G.J.: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 29(16), 4823–4838 (2008)

    Article  Google Scholar 

  18. Fung, T., LeDrew, E.: Application of principal components analysis to change detection. Photogram. Eng. Remote Sens. 53(12), 1649–1658 (1987)

    Google Scholar 

  19. Ridd, M.K., Liu, J.: A comparison of four algorithms for change detection in an urban environment. Remote Sens. Environ. 63(2), 95–100 (1998)

    Article  Google Scholar 

  20. Fung, T., LeDrew, E.: For change detection using various accuracy. Photogram. Eng. Remote Sens. 54(10), 1449–1454 (1988)

    Google Scholar 

  21. Archinal, B.A., et al.: A new Mars digital image model (MDIM 2.1) control network. Int. Arch. Photogram. Remote Sens. 35, B4 (2004)

    Google Scholar 

Download references

Acknowledgement

The author thanks Director, Space Applications Centre ISRO for his encouragement and support. The author also thanks other members of optical data processing team for carrying out this work and providing feedback on the procedure developed.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Misra, I., Rohil, M.K., Manthira Moorthi, S., Dhar, D. (2021). Mars Surface Multi-decadal Change Detection Using ISRO’s Mars Color Camera (MCC) and Viking Orbiter Images. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics