Skip to main content

AE-CNN Based Supervised Image Classification

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1378))

Included in the following conference series:

Abstract

Point of Care Ultrasound (PoCUS) imaging is an important tool in detecting lung consolidations and tissue sliding, and hence has a potential to identify the onset of novel-CoVID-19 attack in a person. Of late, Convolutional Neural Network (CNN) architectures have gained popularity in improving the accuracy of the predictions. Motivated by this, in this paper, we introduce a CNN based Auto Encoder (AE-CNN) for a better representation of the features to get an accurate prediction. While most of the existing models contain ‘fully connected’ (FC) layers, in our work, we use only convolutional layers instead of FC layers before the output layer, which helps us in achieving a less training time of the model. Moreover, fully connected layers of a network can not learn the patterns in an image as much as convolutional layers can. This is the main advantage of our model over its existing counterparts. We demonstrate that our model detects the lung abnormalities in the ultrasound images with an accuracy of 96.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.grepmed.com/?q=covid19.

  2. 2.

    https://www.butterflynetwork.com/covid19.

References

  1. Smith, M.J., Hayward, S.A., Innes, S.M., et al.: Point-of-care lung ultrasound in patients with COVID-19 – a narrative review. Anaesthesia 75, 1096–1104 (2020). https://doi.org/10.1111/anae.15082

    Article  Google Scholar 

  2. Miller, A.: Practical approach to lung ultrasound. BJA Educ. 16, 39–45 (2016). https://doi.org/10.1093/bjaceaccp/mkv012

    Article  Google Scholar 

  3. Ioos, V., Galbois, A., Chalumeau-Lemoine, L., et al.: An integrated approach for prescribing fewer chest x-rays in the ICU. Ann. Intensive Care 1, 4 (2011). https://doi.org/10.1186/2110-5820-1-4

    Article  Google Scholar 

  4. Wolfram, F., Braun, C., Gutsche, H., Lesser, T.G.: In-Vivo assessment of lung ultrasound features mimicking viral pneumonia using a large animal model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. https://doi.org/10.1109/TUFFC.2020.3010299

  5. van Sloun, R.J.G., Demi, L.: Localizing B-Lines in lung ultrasonography by weakly supervised deep learning, in-vivo results. IEEE J. Biomed. Health Inform. 24, 957–964 (2020). https://doi.org/10.1109/JBHI.2019.2936151

    Article  Google Scholar 

  6. Srinivas, M., Naidu, R., Sastry, C.S., et al.: Content based medical image retrieval using dictionary learning. Neurocomputing 168 (2015). https://doi.org/10.1016/j.neucom.2015.05.036

  7. Roy, S., et al.: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans. Med. Imaging 39(8), 2676–2687 (2020). https://doi.org/10.1109/TMI.2020.2994459

    Article  Google Scholar 

  8. Van Sloun, R.J., Cohen, R., Eldar, Y.C.: Deep learning in ultrasound imaging. Proc. IEEE 108(1), 11–29 (2019). http://arxiv.org/abs/1907.02994

  9. Waheed, A., Goyal, M., Gupta, D., Khanna, A., et al.: CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access 8, 91916–91923 (2020). https://doi.org/10.1109/ACCESS.2020.2994762

    Article  Google Scholar 

  10. Anantrasirichai, N., Hayes, W., Allinovi, M., Bull, D., Achim, A.: Line detection as an inverse problem: application to lung ultrasound imaging. IEEE Trans. Med. Imaging 36(10), 2045–2056 (2017). https://doi.org/10.1109/TMI.2017.2715880

    Article  Google Scholar 

  11. Sridar, P., Kumar, A., Quinton, A., Nanan, R., Kim, J., Krishnakumar, R.: Decision fusion-based fetal ultrasound image plane classification using convolutional neural networks. Ultrasound Med. Biol. 45, 1259–1273 (2019). https://doi.org/10.1016/j.ultrasmedbio.2018.11.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganduri Chandra or Muralidhar Reddy Challa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandra, G., Challa, M.R. (2021). AE-CNN Based Supervised Image Classification. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics