Skip to main content

Deep over and Under Exposed Region Detection

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1378))

Included in the following conference series:

  • 1240 Accesses

Abstract

The camera sensors often fail to capture all the brightness intensities present in the visible spectrum of light. This is due to the limited dynamic range of the sensor elements. When bright light falls on a camera sensor, it is not appropriately measured. The recorded brightness values that fall outside the sensor’s dynamic range are stored as the minimum or maximum value depending on the bit-depth of the sensor. This results in a loss of information and undesirable artifacts in the form of blown-out areas, referred to as over- and under-exposed regions. In this study, we propose to detect these areas in an image using deep learning tools. Our approach uses semantic segmentation to mark the under, over, and correctly exposed regions in the image. We have created a new dataset containing 4928 images to train and test the performance of the model using a pre-trained state-of-the-art model architecture and re-trained it on our custom dataset. To the best of our knowledge, this is the first attempt to use semantic segmentation and transfer learning methods to identify these regions in an end-to-end fashion. We obtain a Dice score and a Jaccard score of 0.93 and 0.86, respectively, which are better than the state-of-the-art methods. The quantitative and qualitative results show that the proposed method outperforms several existing methods for identifying the over and the under-exposed regions. We will make the dataset public for research work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  2. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: ACM SIGGRAPH 2008 Classes, pp. 1–10 (2008)

    Google Scholar 

  3. Griffiths, D.J., Wicks, A.: High speed high dynamic range video. IEEE Sens. J. 17(8), 2472–2480 (2017). https://doi.org/10.1109/JSEN.2017.2668378

    Article  Google Scholar 

  4. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  5. Grossberg, M.D., Nayar, S.K.: Modeling the space of camera response functions. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1272–1282 (2004)

    Article  Google Scholar 

  6. Wang, L., Wei, L.-Y., Zhou, K., Guo, B., Shum, H.-Y.: High dynamic range image hallucination. In: Rendering Techniques, pp. 321–326 (2007)

    Google Scholar 

  7. Hou, L., Ji, H., Shen, Z.: Recovering over-/underexposed regions in photographs. SIAM J. Imaging Sci. 6(4), 2213–2235 (2013)

    Article  MathSciNet  Google Scholar 

  8. Guo, D., Cheng, Y., Zhuo, S., Sim, T.: Correcting over-exposure in photographs. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 515–521. IEEE (2010)

    Google Scholar 

  9. Salscheider, N.O.: Simultaneous object detection and semantic segmentation. arXiv preprint arXiv:1905.02285 (2019)

  10. Taghanaki, S.A., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54, 1–42 (2020)

    Google Scholar 

  11. Schmitt, M., Prexl, J., Ebel, P., Liebel, L., Zhu, X.X.: Weakly supervised semantic segmentation of satellite images for land cover mapping-challenges and opportunities. arXiv preprint arXiv:2002.08254 (2020)

  12. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  13. Di, X., Doutre, C., Nasiopoulos, P.: Correction of clipped pixels in color images. IEEE Trans. Visual Comput. Graph. 17(3), 333–344 (2010)

    Google Scholar 

  14. Rouf, M., Lau, C., Heidrich, W.: Gradient domain color restoration of clipped highlights. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 7–14. IEEE (2012)

    Google Scholar 

  15. Yoon, Y.-J., Byun, K.-Y., Lee, D.-H., Jung, S.-W., Ko, S.-J.: A new human perception-based over-exposure detection method for color images. Sensors 14(9), 17159–17173 (2014)

    Article  Google Scholar 

  16. Marnerides, D., Bashford-Rogers, T., Hatchett, J., Debattista, K.: ExpandNet: a deep convolutional neural network for high dynamic range expansion from low dynamic range content. In: Computer Graphics Forum, vol. 37, pp. 37–49. Wiley Online Library (2018)

    Google Scholar 

  17. Gao, Z., Edirisinghe, E., Chesnokov, S.: OEC-CNN: a simple method for over-exposure correction in photographs. Electron. Imaging 2020(10), 182-1 (2020)

    Article  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  21. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE transactions on pattern analysis and machine intelligence 40(4), 834–848 (2017)

    Article  Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Liu, S., et al.: Switchable temporal propagation network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 87–102 (2018)

    Google Scholar 

  24. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)

    Article  Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  26. Marcel, S., Rodriguez, Y.: Torchvision the machine-vision package of torch. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1485–1488 (2010)

    Google Scholar 

  27. Ketkar, N.: Introduction to PyTorch. In: Ketkar, N. (ed.) Deep Learning with Python, pp. 195–208. Springer, Heidelberg (2017). https://doi.org/10.1007/978-1-4842-2766-4_12

    Chapter  Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  30. Minhas, M.S.: Transfer Learning for Semantic Segmentation using PyTorch DeepLab v3. GitHub.com/msminhas93, 12 September 2019. https://github.com/msminhas93/DeepLabv3FineTuning

Download references

Acknowledgement

The authors are grateful to the area chairs and the reviewers of CVIP for their constructive comments. Dr. Shanmuganathan Raman was supported by SERB Core Research Grant. We thank Ashish Tiwari for his valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshita Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, D., Raman, S. (2021). Deep over and Under Exposed Region Detection. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics