Skip to main content

A Review of Transfer Learning for EEG-Based Driving Fatigue Detection

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1369))

Included in the following conference series:

  • 770 Accesses

Abstract

Driver mental state detection has been playing an increasingly significant role in safe driving for decades. Electroencephalogram (EEG)-based detection methods have already been applied to improve detection performance. However, numerous problems still have not been addressed in practical applications. Specifically, most of the existing traditional methods require a large number of training data, caused by differences in cross-subject samples and cross-time of the same subject, resulting in enormous calculations and time consumption. To overcome the above limitations, transfer learning, which applies data or knowledge from the source domain to the target domain, has been widely adopted in EEG processing. This article reviews the current state of mainstream transfer learning methods and their application based on driver mental state detection. To the best of our knowledge, this is the first comprehensive review of transfer learning methods for driving fatigue detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coetzer, R.C., Hancke, G.P.: Eye detection for a real-time vehicle driver fatigue monitoring system. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 66–71 (2011)

    Google Scholar 

  2. Lal, S.K., Craig, A.: A critical review of the psychophysiology of driver fatigue. Biol. Psychol. 55, 173–194 (2001)

    Article  Google Scholar 

  3. Sikander, G., Shahzad, A.: Driver fatigue detection systems: a review. IEEE Trans. Intell. Transp. Syst. 20, 2339–2352 (2019)

    Article  Google Scholar 

  4. May, J.F., Baldwin, C.L.: Driver fatigue: The importance of identifying causal factors of fatigue when considering detection and countermeasure technologies. Transp. Res. Part F: Traffic Psychol. Beh. 12(3), 218–224 (2009)

    Article  Google Scholar 

  5. Lal, S.K.L., Craig, A.: Driver fatigue: electroencephalography and psychological assessment. Psychophysiology 39(3), 313–321 (2002)

    Article  Google Scholar 

  6. Lewis, I., Watson, B., Tay, R., White, K.M.: The role of fear appeals in improving driver safety: a review of the effectiveness of fear-arousing (threat) appeals in road safety advertising. Int. J. Behav. Consultation and Therapy 3(2), 203 (2007)

    Article  Google Scholar 

  7. Azam, K., Shakoor, A., Shah, R.A., Khan, A., Shah, S.A., Khalil, M.S.: Comparison of fatigue related road traffic crashes on the national highways and motorways in Pakistan. J. Eng. Appl. Sci. 33(2), 47–54 (2014)

    Google Scholar 

  8. Chellappa, R., Charles, L.W., Saad, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–741 (1995)

    Article  Google Scholar 

  9. Mandal, B., Li, L., Wang, G.S., Lin, J.: Towards detection of bus driver fatigue based on robust visual analysis of eye state. IEEE Trans. Intell. Transp. Syst. 18(3), 545–557 (2016)

    Article  Google Scholar 

  10. Yao, K.P., Lin, W.H., Fang, C.Y., Wang, J.M., Chang, S.L., Chen, S.W.: Real-time vision-based driver drowsiness/fatigue detection system. In: 2010 IEEE 71st Vehicular Technology Conference, pp. 1–5 (2010)

    Google Scholar 

  11. Eoh, H.J., Chung, M.K., Kim, S.H.: Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. Int. J. Ind. Ergon. 35(4), 307–320 (2005)

    Article  Google Scholar 

  12. Kong, W., Zhou, Z., Jiang, B., Babiloni, F., Borghini, G.: Assessment of driving fatigue based on intra/inter-region phase synchronization. Neurocomputing 219, 474–482 (2017)

    Article  Google Scholar 

  13. Jung, S.J., Shin, H.S., Chung, W.Y.: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intel. Transport Syst. 8(1), 43–50 (2014)

    Article  Google Scholar 

  14. Brandt, T., Stemmer, R., Rakotonirainy, A.: Affordable visual driver monitoring system for fatigue and monotony. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), vol. 7, pp. 6451–6456 (2004)

    Google Scholar 

  15. Chai, R., et al.: Improving EEG-based driver fatigue classification using sparse-deep belief networks. Frontiers Neurosci. 11, 103 (2017)

    Article  Google Scholar 

  16. Pan, S.J., Qiang, Y.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  17. Wang, P., Lu, J., Zhang, B., Tang, Z.: A review on transfer learning for brain-computer interface classification. In: 2015 5th International Conference on Information Science and Technology (ICIST) (2015)

    Google Scholar 

  18. Monteiro, T.G., Skourup, C., Zhang, H.: Using EEG for mental fatigue assessment: a comprehensive look into the current state of the art. IEEE Trans. Hum. Mach. Syst. 49(6), 599–610 (2019)

    Article  Google Scholar 

  19. Lotte, F., et al.: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng. 15(3), (2018)

    Article  Google Scholar 

  20. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32, 53–69 (2015)

    Article  Google Scholar 

  21. Khan, M.N., Heisterkamp, D.R.: Adapting instance weights for unsupervised domain adaptation using quadratic mutual information and subspace learning. In: 2016 23rd International Conference on Pattern Recognition (ICPR), vol. 21, pp. 1560–1565 (2016)

    Google Scholar 

  22. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 193–200 (2007)

    Google Scholar 

  23. Zhao, Z., Chen, Y., Liu, J., Shen, Z., Liu, M.: Cross-people mobile-phone based activity recognition. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  24. Wei, Y., Zhu, Y., Leung, C., Song, Y., Yang, Q.: Instilling social to physical: co-regularized heterogeneous transfer learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016)

    Google Scholar 

  25. Hu, D., Yang, Q.: Transfer learning for activity recognition via sensor mapping. In: International Joint Conference on IJCAI. DBLP (2011)

    Google Scholar 

  26. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2010). https://doi.org/10.1109/tnn.2010.2091281

    Article  Google Scholar 

  27. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)

    Google Scholar 

  28. Satpal, S., Sarawagi, S.: Domain adaptation of conditional probability models via feature subsetting. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 224–235. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_23

    Chapter  Google Scholar 

  29. Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Schölkopf, B.: Domain adaptation with conditional transferable components. In: International Conference on Machine Learning, pp. 2839–2848 (2016)

    Google Scholar 

  30. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2960–2967 (2013)

    Google Scholar 

  31. Sun, H., Shuai, L., Shilin, Z.: Discriminative subspace alignment for unsupervised visual domain adaptation. Neural Process. Lett. 44(3), 779–793 (2016)

    Article  Google Scholar 

  32. Long, M., Wang, J., Cao, Y., Sun, J., Philip, S.Y.: Deep learning of transferable representation for scalable domain adaptation. IEEE Trans. Knowl. Data Eng. 28(8), 2027–2040 (2016)

    Article  Google Scholar 

  33. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  34. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  35. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  36. Mihalkova, L., Mooney, R J.: Transfer learning by mapping with minimal target data. In: Proceedings of the AAAI-2008 Workshop on Transfer Learning for Complex Tasks (2008)

    Google Scholar 

  37. Wu, D., Xu, Y., Lu, B.: Transfer learning for EEG-based brain-computer interfaces: a review of progresses since 2016. arXiv preprint arXiv:2004.06286 (2020)

  38. Wu, D., Lawhern, V.J., Gordon, S., Lance, B.J., Lin, C.T.: Driver drowsiness estimation from EEG signals using online weighted adaptation regularization for regression (OwARR). IEEE Trans. Fuzzy Syst. 25(6), 1522–1535 (2016)

    Article  Google Scholar 

  39. Wei, C.S., Lin, Y.P., Wang, Y.T., Jung, T.P., Bigdely-Shamlo, N., Lin, C.T.: Selective transfer learning for EEG-based drowsiness detection. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3229–3232 (2015)

    Google Scholar 

  40. Wei, C.S., Lin, Y.P., Wang, Y.T., Lin, C.T., Jung, T.P.: A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection. NeuroImage 174, 407–419 (2018)

    Article  Google Scholar 

  41. Wu, D., Chuang, C.H., Lin, C.T.: Online driver’s drowsiness estimation using domain adaptation with model fusion. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 904–910 (2015)

    Google Scholar 

  42. Jiang, Y., Zhang, Y., Lin, C., Wu, D., Lin, C.T.: EEG-based driver drowsiness estimation using an online multi-view and transfer TSK fuzzy system. IEEE Trans. Intell. Transp. Syst. 22, 1752–1764 (2020)

    Article  Google Scholar 

  43. Chen, L.L., Zhang, A., Lou, X.G.: Cross-subject driver status detection from physiological signals based on hybrid feature selection and transfer learning. Expert Syst. Appl. 137, 266–280 (2019)

    Article  Google Scholar 

  44. Zhang, J., Wang, Y., Li, S.: Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques. Cogn. Technol. Work 19(4), 587–605 (2017)

    Article  Google Scholar 

  45. Liu, Y., Lan, Z., Cui, J., Sourina, O., Müller-Wittig, W.: Inter-subject transfer learning for EEG-based mental fatigue recognition. Adv. Eng. Inform. 46, (2020)

    Article  Google Scholar 

  46. Yan, K., Kou, L., Zhang, D.: Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans. Cybern. 48(1), 288–299 (2017)

    Article  Google Scholar 

  47. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel method for the two-sample-problem. Adv. Neural. Inf. Process. Syst. 19, 513–520 (2006)

    MATH  Google Scholar 

  48. Zhang, Y.Q., Zheng, W.L., Lu, B.L.: Transfer components between subjects for EEG-based driving fatigue detection. In: Arik, S., Huang, T., Lai, W.K., Liu, Qingshan (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 61–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26561-2_8

    Chapter  Google Scholar 

  49. Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)

    Article  Google Scholar 

  50. Zheng, W.L., Lu, B.L.: A multimodal approach to estimating vigilance using EEG and forehead EOG. J. Neural Eng. 14(2), (2017)

    Article  Google Scholar 

  51. Wu, D., Lance, B.J., Parsons, T.D.: Collaborative filtering for brain-computer interaction using transfer learning and active class selection. PLoS ONE 8(2), (2013)

    Article  Google Scholar 

  52. Shalash, W.M.: Driver fatigue detection with single EEG channel using transfer learning. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6 (2019)

    Google Scholar 

  53. Li, H., Zheng, W.L., Lu, B.L.: Multimodal vigilance estimation with adversarial domain adaptation networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2018)

    Google Scholar 

  54. Parsons, T.D., Courtney, C.G., Dawson, M.E.: Virtual reality stroop task for assessment of supervisory attentional processing. J. Clin. Exp. Neuropsychol. 35(8), 812–826 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Key R&D Program of China for Intergovernmental International Science and Technology Innovation Cooperation Project (2017YFE0116800), National Natural Science Foundation of China (U20B2074, U1909202), Science and Technology Program of Zhejiang Province (2018C04012), and supported by Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province (2020E10010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanzeng Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, J., Peng, Y., Ozawa, K., Kong, W. (2021). A Review of Transfer Learning for EEG-Based Driving Fatigue Detection. In: Wang, Y. (eds) Human Brain and Artificial Intelligence. HBAI 2021. Communications in Computer and Information Science, vol 1369. Springer, Singapore. https://doi.org/10.1007/978-981-16-1288-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1288-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1287-9

  • Online ISBN: 978-981-16-1288-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics