Skip to main content

Incorporating Task-Related Information in Dimensionality Reduction of Neural Population Using Autoencoders

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1369))

Included in the following conference series:

  • 592 Accesses

Abstract

Dimensionality reduction plays an important role in neural signal analysis. Most dimensionality reduction methods can effectively describe the majority of the variance of the data, such as principal component analysis (PCA) and locally linear embedding (LLE). However, they may not be able to capture useful information given a specific task, since these approaches are unsupervised. This study proposes an autoencoder-based approach that incorporates task-related information as strong guidance to the dimensionality reduction process, such that the low dimensional representations can better reflect information directly related to the task. Experimental results show that the proposed method is capable of finding task-related features of the neural population effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshar, A., Santhanam, G., Byron, M.Y., Ryu, S.I., Sahani, M., Shenoy, K.V.: Single-trial neural correlates of arm movement preparation. Neuron 71(3), 555–564 (2011)

    Article  Google Scholar 

  2. Aoi, M., Pillow, J.W.: Model-based targeted dimensionality reduction for neuronal population data. In: Advances in Neural Information Processing Systems, pp. 6690–6699 (2018)

    Google Scholar 

  3. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  4. Bengio, Y., CA, M.: RMSProp and equilibrated adaptive learning rates for nonconvex optimization. Corr abs/1502.04390 (2015)

    Google Scholar 

  5. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)

    Google Scholar 

  6. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  7. Briggman, K.L., Abarbanel, H.D., Kristan, W.B.: Optical imaging of neuronal populations during decision-making. Science 307(5711), 896–901 (2005)

    Article  Google Scholar 

  8. Cunningham, J.P., Byron, M.Y.: Dimensionality reduction for large-scale neural recordings. Nature Neurosci. 17(11), 1500–1509 (2014)

    Article  Google Scholar 

  9. Durstewitz, D., Vittoz, N.M., Floresco, S.B., Seamans, J.K.: Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66(3), 438–448 (2010)

    Article  Google Scholar 

  10. Gibson, S., Judy, J.W., Markovic, D.: Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction. IEEE Trans. Neural Syst. Rehabil. Eng. 18(5), 469–478 (2010)

    Article  Google Scholar 

  11. Hand, D.J.: Kernel Discriminant Analysis, p. 264. Wiley, New York (1982)

    MATH  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  14. Hochberg, L.R., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Article  Google Scholar 

  15. Hochberg, L.R., et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  18. Jackson, A., Mavoori, J., Fetz, E.E.: Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444(7115), 56–60 (2006)

    Article  Google Scholar 

  19. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  22. Kobak, D., et al.: Demixed principal component analysis of neural population data. Elife 5, e10989 (2016)

    Article  Google Scholar 

  23. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  24. Lian, Q., Qi, Y., Pan, G., Wang, Y.: Learning graph in graph convolutional neural networks for robust seizure prediction. J. Neural Eng. 17, 035004 (2020)

    Article  Google Scholar 

  25. Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T.: Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503(7474), 78–84 (2013)

    Article  Google Scholar 

  26. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition, vol. 544. Wiley, New York (2004)

    MATH  Google Scholar 

  27. Mikolov, T., Karafiát, M., Burget, L., Černocky, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association, pp. 1045–1048 (2010)

    Google Scholar 

  28. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  29. Nordhausen, C.T., Maynard, E.M., Normann, R.A.: Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726(1–2), 129–140 (1996)

    Article  Google Scholar 

  30. Pan, G., et al.: Rapid decoding of hand gestures in electrocorticography using recurrent neural networks. Front. Neurosci. 12, 555 (2018)

    Article  Google Scholar 

  31. Pang, R., Lansdell, B.J., Fairhall, A.L.: Dimensionality reduction in neuroscience. Current Biol. 26(14), R656–R660 (2016)

    Article  Google Scholar 

  32. Panzeri, S., Macke, J.H., Gross, J., Kayser, C.: Neural population coding: combining insights from microscopic and mass signals. Trends Cogn. Sci. 19(3), 162–172 (2015)

    Article  Google Scholar 

  33. Qi, Y., Liu, B., Wang, Y., Pan, G.: Dynamic ensemble modeling approach to nonstationary neural decoding in brain-computer interfaces. In: Advances in Neural Information Processing Systems, pp. 6089–6098 (2019)

    Google Scholar 

  34. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  35. Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood component analysis. Adv. Neural Inf. Process. Syst. (NIPS) 17, 513–520 (2004)

    Google Scholar 

  36. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  37. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ., San Diego, La Jolla, Inst. for Cognitive Science, Technical report (1985)

    Google Scholar 

  38. Seidemann, E., Meilijson, I., Abeles, M., Bergman, H., Vaadia, E.: Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task. J. Neurosci. 16(2), 752–768 (1996)

    Article  Google Scholar 

  39. Suner, S., Fellows, M.R., Vargas-Irwin, C., Nakata, G.K., Donoghue, J.P.: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 524–541 (2005)

    Article  Google Scholar 

  40. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  41. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)

    Google Scholar 

  42. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  43. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Zhou, L., et al.: Decoding motor cortical activities of monkey: a dataset. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 3865–3870. IEEE (2014)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the grants from National Key R&D Program of China (2018YFA0701400), National Natural Science Foundation of China (No. 61673340), Zhejiang Provincial Natural Science Foundation of China (LZ17F030001), Fundamental Research Funds for the Central Universities (2020FZZX001-05), and the Zhejiang Lab (2019KE0AD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lian, Q., Liu, Y., Zhao, Y., Qi, Y. (2021). Incorporating Task-Related Information in Dimensionality Reduction of Neural Population Using Autoencoders. In: Wang, Y. (eds) Human Brain and Artificial Intelligence. HBAI 2021. Communications in Computer and Information Science, vol 1369. Springer, Singapore. https://doi.org/10.1007/978-981-16-1288-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1288-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1287-9

  • Online ISBN: 978-981-16-1288-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics