Skip to main content

Multi-Objective Algorithm Based on Tissue P System for Solving Tri-objective Grain Dispatching and Transportation

  • Conference paper
  • First Online:
Book cover Bio-Inspired Computing: Theories and Applications (BIC-TA 2020)

Abstract

This paper presents a multi-objective algorithm based on tissue P system(MO TPS for short) for solving the tri-objective grain dispatching and transportation. This problem can be abstracted to solve the tri-objective VRPTW. In the algorithm, the cells of the tissue P system are divided into two groups. The first group, consisting of only one cell, aims at approaching to the Pareto front by the intelligent algorithm with non-domination rule while second group, consisting of six cells, focuses on searching boundaries by the artificial bee colony algorithm with different prioritization rules. The main idea of the MO TPS is about three aspects: search boundaries, approach to the Pareto front and approach to the Pareto front on the premise of preserving the elite boundary. 56 Solomon benchmarks are utilized to test algorithm performance. Experimental results show that on the premise of ensuring accuracy, the proposed approach outperforms compared algorithms in terms of three metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng, W., Ke, L., Kwong, S.: Learning to decompose: a paradigm for decomposition-based multiobjective optimization. IEEE Trans. Evol. Comput. 23(3), 376–390 (2018)

    Google Scholar 

  2. Dbe, K., Hussein, R., Roy, P.C., Toscano, G.: A taxonomy for metamodeling frameworks for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 23(1), 14–116 (2019)

    Google Scholar 

  3. He, Z., Gary, G.Y., Zhang, Y.: Robust multiobjective optimization via evolutionary algorithms. IEEE Trans. Evol. Comput. 23(2), 316–33 (2019)

    Article  Google Scholar 

  4. Huang, H.: A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator. IEEE Access. 6(99), 14710–14721 (2018)

    Google Scholar 

  5. Wy, J., Kim, B.I., Kim, S.: The rollon-rolloff waste collection vehicle routing problem with time windows. Eur. J. Oper. Res. 224(3), 466–476 (2013)

    Article  MATH  Google Scholar 

  6. Bhusiri, N., Qureshi, A.G., Taniguchi, E.: The tradeoff between fixed vehicle costs and time-dependent arrival penalties in a routing problem. Transp. Res. E: Logist. Transp. Rev. 62, 1–22 (2014)

    Article  Google Scholar 

  7. Amorim, P., Almada-Lobo, B.: The impact of food perishability issues in the vehicle routing problem. Comput. Ind. Eng. 67(2), 223–233 (2014)

    Article  Google Scholar 

  8. Melián-Batista, B., De, S.A., Angelbello, F.: A bi-objective vehicle routing problem with time windows: a real case in Tenerife. Appl. Soft Comput. J. 17, 140–152 (2014)

    Article  Google Scholar 

  9. Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57(4), 472–1483 (2009)

    Article  Google Scholar 

  10. Layani, R., Khemakhem, M., Semet, F.: Rich vehicle routing problems: from a taxonomy to a definition. Eur. J. Oper. Res. 241(1), 1–14 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Montoya, J.R., Franco, J.L., Isaza, S.N., Jimenez, H.F., Herazo, N.: A literature review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 79(1), 115–129 (2015)

    Article  Google Scholar 

  12. Dorling, K., Heinrichs, J., Messier, G., Magierowski, S.: Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 1–16 (2016)

    Google Scholar 

  13. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  14. Pan, L., Carlos, M.: Solving multidimensional 0–1 knapsack problem by P systems with input and active membranes. J. Parallel Distrib. Comput. 65(12), 1578–1584 (2005)

    Article  MATH  Google Scholar 

  15. Pan, L., Daniel, D.P., Marip, J.: Computation of Ramsey numbers by P systems with active membranes. Int. J. Found. Comput. Sci. 22(1), 29–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martin, C., Pazos, J., Paun, G., Rodriguez, A.: A New Class of Symbolic Abstract Neural Nets: Tissue P Systems. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  17. Paun, G., Perez-Jimenez, M.J., Riscos-Nunez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. Control 3(3), 295–303 (2008)

    Article  Google Scholar 

  18. Pan, L., Paun, G.: Spiking neural P systems: an improved normal form. Theoret. Comput. Sci. 411(6), 906–918 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan, L., Paun, G., Perez-Jimenez, M.J.: Spiking neural P systems with neuron division and budding. Sci. China Inf. Sci. 54(8), 1596–1607 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, T., Zhang, Z., Paun, G., Pan, L.: Cell-like spiking neural P systems. Theoret. Comput. Sci. 623, 180–189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, T., Pan, L., Yu, Q, Tan, K.C.: Numerical spiking neural P systems. IEEE Trans. Neural Networks Learn Syst. https://doi.org/10.1109/TNNLS.2020.3005538

  22. Wu, T.Zhang, L., Pan, L.: Spiking neural P systems with target indications. Theoret. Comput. Sci. https://doi.org/10.1061/j.tcs.2020.07.016

  23. Wu, T., Paun, A., Zhang, Z., Pan, L.: Spiking neural P systems with polarizations. IEEE Trans. Neural Networks Learn. Syst. 29(8), 3349–3360 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wu, T., Bilbie, F.-D., Paun, A., Pan, L., Neri, F.: Simplified and yet Turing universal spiking nerual P systems with communication on request. Int. J. Neural Syst. 28(8), 1850013 (2018)

    Article  Google Scholar 

  25. Nishida, T.Y.: Membrane algorithm: an approximate algorithm for NP-complete optimization problems exploiting P-systems. In: Proceedings of the 6th International Workshop on Membrane Computing (WMC 2005), Vienna, Austria, pp. 26–43 (2005)

    Google Scholar 

  26. Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Martin, C., Pazos, J., Paun, G.: Tissue P systems. Theor. Comput. Sci. 61(1), 295–326 (2003)

    Google Scholar 

  28. Zhang, G., GHeorghe, M., Pan, L., Perez-Jimenez, M.J.: Evolutionary membrane computing: a comprehensive survey and new results. Inform. Sences 279, 528–551 (2014)

    Google Scholar 

  29. Wang, X., Zhang, G., Junbo, Z., Haina, R., Floentin, I., Raluca, L.: A modified membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning. Int. J. Comput. Commun. Control 10(5), 732–745 (2015)

    Article  Google Scholar 

  30. Huang, L., He, X., Wang, N., Yi, X.: P systems based multi-objective optimization algorithm. Progress Natural Sci. Mat. Int. 17(4), 458–465 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, G., Gheorghe, M., Wu, C.Z.: A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae 87(1), 93–116 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, G., Liu, C., Gheorghe, M.: Diversity and convergence analysis of membrane algorithms. In: Proceedings of the 5th IEEE International Conference on Bio-Inspired Computing: Theories and Applications, pp. 596–603 (2010)

    Google Scholar 

  33. Zhang, G., Cheng, J., Gheorghe, M., Meng, Q.: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Appl. Soft Comput. J. 13(3), 1528–1542 (2013)

    Article  Google Scholar 

  34. He, J., Xiao, J.: An adaptive membrane algorithm for solving combinatorial optimization problems. Acta Mathematica Scientia 5, 1377–1394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Han, M., Liu, C., Xing, J.: An evolutionary membrane algorithm for global numerical optimization problems. Inf. Sci. 276, 219–241 (2014)

    Article  MathSciNet  Google Scholar 

  36. He, J., Zhang, K.: A hybrid distribution algorithm based on membrane computing for solving the multiobjective multiple traveling salesman problem. Fundamenta Informaticae 136(3), 199–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A.: Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems. J. Membr. Comput. 1, 85–92 (2019). https://doi.org/10.1007/s41965-018-00004-9

    Article  MathSciNet  MATH  Google Scholar 

  39. Ullrich, C.A.: Integrated machine scheduling and vehicle routing with time windows. Eur. J. Oper. Res. 227(1), 152–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu, S., Ding, C., Zhu, K.: A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material. Exp. Syst. Appl. 38, 10568–10573 (2011)

    Article  Google Scholar 

  41. Ombuki, B., Ross, B., Hanshar, F.: Multi-objective genetic algorithm for vehicle routing problem with time windows. Appl. Intell. 24, 17–30 (2006)

    Article  Google Scholar 

  42. Tan, K.C., Chew, Y.H., Lee, L.H.: A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Comput. Optim. Appl. 34(1), 115–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ghoseiri, K., Ghannadpour, F.: Multi-objective vehicle routing problem withtime windows using goal programming and genetic algorithm. Appl. Soft Comput. 4, 115–151 (2010)

    Google Scholar 

  44. Hong, S.C., Park, Y.B.: A heuristic for bi-objective vehicle routing with time window constraints. Int. J. Prod. Econ. 62(3), 249–258 (1999)

    Article  Google Scholar 

  45. Zakaria, N.: Partially optimized cyclic shift crossover for multi-objective genetic algorithms for the multi-objective vehicle routing problem with time-windows. In: 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 106–115 (2014)

    Google Scholar 

  46. Andreas, K., Savvas, P., Christoforos, C.: Adaptive evolutionary algorithm for a multi-objective VRP. Int. J. Eng. Intell. Syst. 22 (2014)

    Google Scholar 

  47. Niu, Y., He, J., Wang, Z., Xiao, J.: A P-based hybrid evolutionary algorithm for vehicle routing problem with time windows. Math. Prob. Eng. 2014, 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Nishida, T.Y.: Membrane algorithm with Brownian subalgorithm and genetic subalgorithm. Int. J. Found. Comput. Sci. 18, 1353–1360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang, L., Suh, I.H., Abraham, H.: Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf. Sci. 181(18), 2370–2391 (2011)

    Article  Google Scholar 

  50. Cheng, J., Zhang, G., Zeng, X.: A novel membrane algorithm based on differential evolution for numerical optimization. Int. J. Unconvent. Comput. 7(3), 159–183 (2011)

    Google Scholar 

  51. Zhang, G., Liu, C., Gheorghe, M.: Diversity and convergence analysis of membrane algorithms. In: Fifth International Conference on Bio-inspired Computing: Theories Applications, pp. 596–603 (2010)

    Google Scholar 

  52. Zhang, G., Gheorghe, M., Jixiang, C.: Dynamic behavior analysis of membranealgorithms. In: MATCH Communications in Mathematical and in Computer Chemistry (in press)

    Google Scholar 

  53. Martin, C., Paun, G., PAzos, J.: Tissue P systems. Theoret. Comput. Sci. 296, 295–326 (2003)

    Google Scholar 

  54. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

    Article  Google Scholar 

  55. Zhang, W., Lin, L., Gen, M.: Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference based local search for VRPTW. Procedia Comput. Ence 14(4), 96–101(2012)

    Google Scholar 

  56. Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the International Joint Conference on Arti\(\textregistered \)cial Intelligence, pp. 156–166 (1985)

    Google Scholar 

  57. Gen, M., Runwei, C.: Genetic Algorithms and Engineering Design. Wiley, New York (1997)

    Google Scholar 

  58. Zhang, H., Zhang, Q., Ma, L.: A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows. Inf. Sci. (2019)

    Google Scholar 

  59. Shu, H., Zhou, K., He, Z., Hu, X.: Two-stage multi-objective evolutionary algorithm based on classified population for the tri-objective VRPTW. Int. J. Unconvent. Comput. 16, 41–171 (2019)

    Google Scholar 

  60. Sivaramkumar, V., Thansekhar, M.R., Saravanan, R.: Demonstrating the importance of using total time balance instead of route balance on a multi-objective vehicle routing problem with time windows. Int. J. Adv. Manufacturing Technol. 98, 1287–1306 (2018). https://doi.org/10.1007/s00170-018-2346-6

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by subproject of the National Key Research and Development Program of China (Grant No. 2017YFD0401102-02), Key Project of Philosophy and Social Science Research Project of Hubei Provincial Department of Education in 2019(19D59) and Science and Technology Research Project of Hubei Provincial Department of Education (D20191604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z., Zhou, K., Shu, H., Zhou, J., Lyu, X., Li, G. (2021). Multi-Objective Algorithm Based on Tissue P System for Solving Tri-objective Grain Dispatching and Transportation. In: Pan, L., Pang, S., Song, T., Gong, F. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2020. Communications in Computer and Information Science, vol 1363. Springer, Singapore. https://doi.org/10.1007/978-981-16-1354-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1354-8_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1353-1

  • Online ISBN: 978-981-16-1354-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics