Skip to main content

A Subtype Classification of Hematopoietic Cancer Using Machine Learning Approach

  • Conference paper
  • First Online:
Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2021)

Abstract

Hematopoietic cancer is the malignant transformation in immune system cells. This cancer usually occurs in areas such as bone marrow and lymph nodes, the hematopoietic organ, and is a frightening disease that collapses the immune system with its own mobile characteristics. Hematopoietic cancer is characterized by the cells that are expressed, which are usually difficult to detect in the hematopoiesis process. For this reason, we focused on the five subtypes of hematopoietic cancer and conducted a study on classifying by applying machine learning algorithms both contextual approach and non-contextual approach. First, we applied PCA approach for extracting suited feature for building classification model for subtype classification. And then, we used four machine learning classification algorithms (support vector machine, k-nearest neighbor, random forest, neural network) and synthetic minority oversampling technique for generating a model. As a result, most classifiers performed better when the oversampling technique was applied, and the best result was that oversampling applied random forest produced 95.24% classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiong, H.Y., et al.: The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015)

    Article  Google Scholar 

  2. Liu, Y., Wang, X.-D., Qiu, M., Zhao, H.: Machine learning for cancer subtype prediction with FSA method. In: Qiu, M. (ed.) SmartCom 2019. LNCS, vol. 11910, pp. 387–397. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34139-8_39

    Chapter  Google Scholar 

  3. Muhamed Ali, A., et al.: A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data. Appl. Sci. 8(12), 2422 (2018)

    Article  Google Scholar 

  4. Chen, R., et al.: Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data. Bioinformatics 36, 1476–1483 (2019)

    Article  Google Scholar 

  5. Gao, F., et al.: DeepCC: a novel deep learning-based framework for cancer molecular subtype classification. Oncogenesis 8(9), 1–2 (2019)

    Article  Google Scholar 

  6. Ries, L.A.G., et al.: SEER cancer statistics review 1975–2017. National Cancer Institute (1975)

    Google Scholar 

  7. Mak, T.W., Saunders, M.E., Jett, B.D.: Primer to the Immune Response. Academic Cell, Elsevier (2014). (ISBN: 9780123852458)

    Google Scholar 

  8. Genomic Data Commons Data Portal. https://portal.gdc.cancer.gov. Accessed 14 Aug 2020

  9. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-1904-8

  10. Kent, M.: Vegetation Description and Data Analysis: A Practical Approach. Wiley, Hoboken (2011)

    Google Scholar 

  11. Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  12. Davagdorj, K., et al.: A machine-learning approach for predicting success in smoking cessation intervention. In: 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST). IEEE (2019)

    Google Scholar 

  13. Sutera, A., et al.: Context-dependent feature analysis with random forests. arXiv preprint arXiv: arXiv:1605.03848 (2016)

  14. Bovolo, F., Bruzzone, L.: A context-sensitive technique based on support vector machines for image classification. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 260–265. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_36

    Chapter  Google Scholar 

  15. Negri, R.G., Da Silva, E.A., Casaca, W.: Inducing contextual classifications with kernel functions into support vector machines. IEEE Geosci. Remote Sens. Lett. 15(6), 962–966 (2018)

    Article  Google Scholar 

  16. Li, D.-C., Liu, C.-W.: A class possibility based kernel to increase classification accuracy for small data sets using support vector machines. Expert Syst. Appl. 37(4), 3104–3110 (2010)

    Article  Google Scholar 

  17. Hearst, M.A.: Support vector machine. University of California, Berkeley (1998)

    Google Scholar 

  18. Ghimire, B., Rogan, J., Miller, J.: Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 1(1), 45–54 (2010)

    Article  Google Scholar 

  19. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  20. Abraham, A.: Artificial neural networks. In: Handbook of Measuring System Design, pp. 901–908 (2005)

    Google Scholar 

  21. Huk, M.: Non-uniform initialization of inputs groupings in contextual neural networks. In: Nguyen, N., Gaol, F., Hong, T.P., Trawiński, B. (eds.) ACIIDS 2019. LNCS, vol. 11432, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_36

    Chapter  Google Scholar 

  22. Huk, M., Mizera-Pietraszko, J.: Context-related data processing in artificial neural networks for higher reliability of telerehabilitation systems. In: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom). IEEE (2015)

    Google Scholar 

  23. Chehreghani, M.H., Chehreghani, M.H.: Efficient context-aware K-nearest neighbor search. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 466–478. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_35

    Chapter  Google Scholar 

  24. Denoeux, T., Kanjanatarakul, O., Sriboonchitta, S.: A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning. Int. J. Approx. Reason. 113, 287–302 (2019)

    Article  MathSciNet  Google Scholar 

  25. Agrawal, R.: K-nearest neighbor for uncertain data. Int. J. Comput. Appl. 105(11), 13–16 (2014)

    Google Scholar 

  26. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2019K2A9A2A06020672 and No. 2020R1A2B5B02001717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Ho Ryu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, K.H., Pham, V.H., Davagdorj, K., Munkhdalai, L., Ryu, K.H. (2021). A Subtype Classification of Hematopoietic Cancer Using Machine Learning Approach. In: Hong, TP., Wojtkiewicz, K., Chawuthai, R., Sitek, P. (eds) Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2021. Communications in Computer and Information Science, vol 1371. Springer, Singapore. https://doi.org/10.1007/978-981-16-1685-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1685-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1684-6

  • Online ISBN: 978-981-16-1685-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics