Skip to main content

LDA Algorithm for the Identification of Topics: A Case of Study in the Most Influential Twitter Accounts in Ecuador

  • Conference paper
  • First Online:
Proceedings of Sixth International Congress on Information and Communication Technology

Abstract

In the last years, the environment in which we develop has had various changes, most of them due to major technological changes, and the constant development of Information and Communication Technologies (ICTs). As a result of the advances in ICTs, today it is common to interact through social networks and make constant use of them. For this reason, this paper presents an analysis of the 10 most influential Twitter accounts in Ecuador; the objective of this analysis is to detect what the topics or topics addressed in these accounts are. The Latent Dirichlet Allocation (LDA) algorithm using bag of words (BoW) model and also the Term Frequency–Inverse Document Frequency (TF-IDF) model were used for the analysis, finally finding, if the topics provided by both models are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://twitter.com.

  2. 2.

    https://www.socialbakers.com/statistics/twitter/profiles/ecuador.

  3. 3.

    https://www.tweepy.org/.

  4. 4.

    https://pypi.org/project/gensim/.

  5. 5.

    https://www.nltk.org/.

References

  1. Ng JJ, Li K (2003) Implications of ict for knowledge management in globalization. Inf Manag Comput Secur 11(4):167–174

    Article  Google Scholar 

  2. Vilares Calvo D (2014) Análisis de contenidos en twitter: clasificación de mensajes e identificación de la tendencia política de los usuarios. Ferrol: Universidade da Coruña

    Google Scholar 

  3. Lage García L (2014) Herramienta para el análisis de la opinión en tweets periodísticos

    Google Scholar 

  4. Carballar JA (2011) Twitter. Marketing personal y profesional, RC Libros

    Google Scholar 

  5. Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on world wide web, pp 591–600

    Google Scholar 

  6. Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on world wide web, pp 851–860

    Google Scholar 

  7. Asur S, Huberman BA (2010) Predicting the future with social media. In: IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology, vol. 1. IEEE 2010, pp 492–499

    Google Scholar 

  8. Weng J, Lim EP, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on Web search and data mining, pp 261–270

    Google Scholar 

  9. Jayadharshini J, Sivapriya R, Abirami S (2018) Trend square: an android application for extracting twitter trends based on location. In: 2018 international conference on current trends towards converging technologies (ICCTCT). IEEE 2018, pp 1–5

    Google Scholar 

  10. Cahyaningtyas RM, Kusumaningrum R, Riyanto DE et al (2017) Emotion detection of tweets in indonesian language using lda and expression symbol conversion. In: 2017 1st international conference on informatics and computational sciences (ICICoS). IEEE 2017, pp 253–258

    Google Scholar 

  11. Zhao WX, Jiang J, Weng J, He J, Lim E-P, Yan H, Li X (2011) Comparing twitter and traditional media using topic models. In: European conference on information retrieval. Springer, Berlin, pp 338–349

    Google Scholar 

  12. Torres J, Baquerizo G, Vaca C (2015) Caracterización de líderes políticos de ecuador en twitter usando aprendizaje de maquina no supervisado. Revista Tecnológica-ESPOL 28(5)

    Google Scholar 

  13. Hoffman M, Bach FR, Blei DM (2010) Online learning for latent dirichlet allocation. In: Advances in neural information processing systems, pp 856–864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge O. Ordoñez-Ordoñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ordoñez-Ordoñez, J.O., Guerrero-Vásquez, L.F., Chasi-Pesántez, P.A., Barros-Piedra, D.P., Coronel-González, E.J., Bustamante-Cacao, K.C. (2022). LDA Algorithm for the Identification of Topics: A Case of Study in the Most Influential Twitter Accounts in Ecuador. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Sixth International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 216. Springer, Singapore. https://doi.org/10.1007/978-981-16-1781-2_33

Download citation

Publish with us

Policies and ethics