Abstract
In the last years, the environment in which we develop has had various changes, most of them due to major technological changes, and the constant development of Information and Communication Technologies (ICTs). As a result of the advances in ICTs, today it is common to interact through social networks and make constant use of them. For this reason, this paper presents an analysis of the 10 most influential Twitter accounts in Ecuador; the objective of this analysis is to detect what the topics or topics addressed in these accounts are. The Latent Dirichlet Allocation (LDA) algorithm using bag of words (BoW) model and also the Term Frequency–Inverse Document Frequency (TF-IDF) model were used for the analysis, finally finding, if the topics provided by both models are similar.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ng JJ, Li K (2003) Implications of ict for knowledge management in globalization. Inf Manag Comput Secur 11(4):167–174
Vilares Calvo D (2014) Análisis de contenidos en twitter: clasificación de mensajes e identificación de la tendencia política de los usuarios. Ferrol: Universidade da Coruña
Lage García L (2014) Herramienta para el análisis de la opinión en tweets periodísticos
Carballar JA (2011) Twitter. Marketing personal y profesional, RC Libros
Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on world wide web, pp 591–600
Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on world wide web, pp 851–860
Asur S, Huberman BA (2010) Predicting the future with social media. In: IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology, vol. 1. IEEE 2010, pp 492–499
Weng J, Lim EP, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on Web search and data mining, pp 261–270
Jayadharshini J, Sivapriya R, Abirami S (2018) Trend square: an android application for extracting twitter trends based on location. In: 2018 international conference on current trends towards converging technologies (ICCTCT). IEEE 2018, pp 1–5
Cahyaningtyas RM, Kusumaningrum R, Riyanto DE et al (2017) Emotion detection of tweets in indonesian language using lda and expression symbol conversion. In: 2017 1st international conference on informatics and computational sciences (ICICoS). IEEE 2017, pp 253–258
Zhao WX, Jiang J, Weng J, He J, Lim E-P, Yan H, Li X (2011) Comparing twitter and traditional media using topic models. In: European conference on information retrieval. Springer, Berlin, pp 338–349
Torres J, Baquerizo G, Vaca C (2015) Caracterización de líderes políticos de ecuador en twitter usando aprendizaje de maquina no supervisado. Revista Tecnológica-ESPOL 28(5)
Hoffman M, Bach FR, Blei DM (2010) Online learning for latent dirichlet allocation. In: Advances in neural information processing systems, pp 856–864
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ordoñez-Ordoñez, J.O., Guerrero-Vásquez, L.F., Chasi-Pesántez, P.A., Barros-Piedra, D.P., Coronel-González, E.J., Bustamante-Cacao, K.C. (2022). LDA Algorithm for the Identification of Topics: A Case of Study in the Most Influential Twitter Accounts in Ecuador. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Sixth International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 216. Springer, Singapore. https://doi.org/10.1007/978-981-16-1781-2_33
Download citation
DOI: https://doi.org/10.1007/978-981-16-1781-2_33
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1780-5
Online ISBN: 978-981-16-1781-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)