Skip to main content

Exposure and Evaluation of Different Indoor Localization Systems

  • Conference paper
  • First Online:
Proceedings of Sixth International Congress on Information and Communication Technology

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 216))

Abstract

Indoor location attracts a lot of attention because people spend their maximum time indoors. As well as the loss of GPS signal power through walls, which requires the integration of other approaches to locate passengers indoors. With the technological growth of telecommunications systems such as 5G and the development of the Internet of Things technique, indoor location is becoming an applicable reality, in order to improve the services offered indoors. In addition, ensuring security in public environments such as airports, train stations, shopping malls, supermarkets… In this paper, we present results acquired during the bibliography phase, before studying more than 78 approaches dominant in the literature. The majority of indoor positioning techniques only use accuracy as a criterion that determines the quality of the approach, while system performance is strongly related to other criteria, such as energy consumption, stability, cost, response time, measurement heterogeneity, environmental change, and others. For this reason, we evaluate the proposed techniques of different categories of indoor positioning systems on these criteria. This document is structured around the following points:

  • We expose the different techniques of indoor positioning

  • We present the different criteria for indoor locations

  • We evaluate indoor positioning techniques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelnasser H, Mohamed R, Elgohary A, Alzantot MF, Wang H, Sen S, Choudhury RR, Youssef M (2015) Semantic-slam: Using environment landmarks for unsupervised indoor localization. IEEE Trans Mob Comput 15(7):1770–1782

    Article  Google Scholar 

  2. Alavi B, Pahlavan K (2006) Modeling of the toa-based distance measurement error using uwb indoor radio measurements. IEEE Commun Lett 10(4):275–277

    Article  Google Scholar 

  3. Botsinis P, Alanis D, Feng S, Babar Z, Nguyen HV, Chandra D, Ng SX, Zhang R, Hanzo L (2017) Quantum-assisted indoor localization for uplink mm-wave and downlink visible light communication systems. IEEE Access 5:23327–23351

    Article  Google Scholar 

  4. Dong J, Noreikis M, Xiao Y, A. Yl¨a-J¨a¨aski. Vinav (2018) A vision based indoor navigation system for smartphones. IEEE Transactions on Mobile Computing, 18(6):1461–1475

    Google Scholar 

  5. Guan W, Chen S, Wen S, Tan Z, Song H, Hou W (2020) High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning. IEEE Photonics J 12(2):1–16

    Article  Google Scholar 

  6. Guidi F, Decarli N, D. Dardari, F. Mani, Errico RD (2018) Millimeter-wave beamsteering for passive rfid tag localization. IEEE Journal of Radio Frequency Identification, 2(1):9–14

    Google Scholar 

  7. Hehn M, Sippel E, Carlowitz C, Vossiek M (2018) High-accuracy localization and calibration for 5-dof indoor magnetic positioning systems. IEEE Trans Instrum Meas 68(10):4135–4145

    Article  Google Scholar 

  8. Ji Y, Hejselbæk J, Fan W, Pedersen GF (2018) A map-free indoor localization method using ultrawideband large-scale array systems. IEEE Antennas Wirel Propag Lett 17(9):1682–1686

    Article  Google Scholar 

  9. Kang W, Han Y (2014) Smartpdr: Smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sens J 15(5):2906–2916

    Article  Google Scholar 

  10. Li H, Qian Z, Tian C, Wang X (2020) Tiloc: Improving the robustness and accuracy for fingerprint-based indoor localization. IEEE Internet Things J 7(4):3053–3066

    Article  Google Scholar 

  11. Li P, Yang X, Yin Y, Gao S, Niu Q (2020) Smartphone-based indoor localization with integrated fingerprint signal. IEEE Access 8:33178–33187

    Article  Google Scholar 

  12. Liu M, Wang H, Yang Y, Zhang Y, Ma L, Wang N (2018) Rfid 3-d indoor localization for tag and tag-free target based on interference. IEEE Trans Instrum Meas 68(10):3718–3732

    Article  Google Scholar 

  13. Luo C, Hong H, Chan MC, Li J, Zhang X, Ming Z (2017) Mpiloc: Self-calibrating multi-floor indoor localization exploiting participatory sensing. IEEE Trans Mob Comput 17(1):141–154

    Article  Google Scholar 

  14. Palacios J, Bielsa G, Casari P, Widmer J (2019) Single-and multiple access point indoor localization for millimeter-wave networks. IEEE Trans Wireless Commun 18(3):1927–1942

    Article  Google Scholar 

  15. Rezazadeh J, Subramanian R, Sandrasegaran K, Kong X, Moradi M, Khodamoradi F (2018) Novel ibeacon placement for indoor positioning in iot. IEEE Sens J 18(24):10240–10247

    Article  Google Scholar 

  16. G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang. Walkiemarkie: Indoor pathway mapping made easy. In Presented as part of the 10th fUSENIXg Symposium on Networked Systems Design and Implementation (fNSDIg 13), pages 85–98, 2013.

    Google Scholar 

  17. Y. Shu, P. Cou´e, Y. Huang, J. Zhang, P. Cheng, and J. Chen. G-loc: Indoor localization leveraging gradient-based fingerprint map. In 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 129–130. IEEE, 2014.

    Google Scholar 

  18. Y. Shu, Y. Huang, J. Zhang, P. Cou´e, P. Cheng, J. Chen, and K. G. Shin. Gradient-based fingerprinting for indoor localization and tracking. IEEE Transactions on Industrial Electronics, 63(4):2424–2433, 2015.

    Google Scholar 

  19. F. Vedadi and S. Valaee. Automatic visual fingerprinting for indoor image-based localization applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017.

    Google Scholar 

  20. Wang C, Luo J, Zheng Y (2018) Optimal target tracking based on dynamic fingerprint in indoor wireless network. IEEE Access 6:77226–77239

    Article  Google Scholar 

  21. Wang Y, Zhao H (2018) Improved smartphone-based indoor pedestrian dead reckoning assisted by visible light positioning. IEEE Sens J 19(8):2902–2908

    Article  Google Scholar 

  22. Yassin A, Nasser Y, Al-Dubai AY, Awad M (2018) Mosaic: Simultaneous localization and environment mapping using mmwave without a-priori knowledge. IEEE Access 6:68932–68947

    Article  Google Scholar 

  23. Yin Z, Jiang X, Yang Z, Zhao N, Chen Y (2017) Wub-ip: A highprecision uwb positioning scheme for indoor multiuser applications. IEEE Syst J 13(1):279–288

    Article  Google Scholar 

  24. Zhang C, Subbu KP, Luo J, Wu J (2014) Groping: Geomagnetism and crowdsensing powered indoor navigation. IEEE Trans Mob Comput 14(2):387–400

    Article  Google Scholar 

  25. Zhao W, Xu L, Qi B, Hu J, Wang T, Runge T (2020) Vivid: Augmenting vision-based indoor navigation system with edge computing. IEEE Access 8:42909–42923

    Article  Google Scholar 

  26. Zhao Y, Xu J, Wu J, Hao J, Qian H (2019) Enhancing camera-based multimodal indoor localization with device-free movement measurement using wifi. IEEE Internet Things J 7(2):1024–1038

    Article  Google Scholar 

  27. Zhou B, Liu A, Lau V (2019) Successive localization and beamforming in 5g mmwave mimo communication systems. IEEE Trans Signal Process 67(6):1620–1635

    Article  MathSciNet  Google Scholar 

  28. Zhou X, Chen L, Yan J, Chen R (2020) Accurate doa estimation with adjacent angle power difference for indoor localization. IEEE Access 8:44702–44713

    Article  Google Scholar 

  29. Zou H, Jin M, Jiang H, Xie L, Spanos CJ (2017) Winips: Wifi-based non-intrusive indoor positioning system with online radio map construction and adaptation. IEEE Trans Wireless Commun 16(12):8118–8130

    Article  Google Scholar 

  30. Zuo J, Liu S, Xia H, Qiao Y (2018) Multi-phase fingerprint map based on interpolation for indoor localization using ibeacons. IEEE Sens J 18(8):3351–3359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Ibnatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibnatta, Y., Khaldoun, M., Sadik, M. (2022). Exposure and Evaluation of Different Indoor Localization Systems. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Sixth International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 216. Springer, Singapore. https://doi.org/10.1007/978-981-16-1781-2_64

Download citation

Publish with us

Policies and ethics