Skip to main content

L1-Norm and Trace Lasso Based Locality Correlation Projection

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1397))

Included in the following conference series:

Abstract

L1-norm based dimensionality reduction methods are the most effective techniques in computer vision and pattern recognition. However, they emphasize the robustness to outliers too much and overlook the correlation information among data so that they usually encounter the instability problem. To overcome this problem, in this paper, we propose a method called L1-norm and trace Lasso based locality correlation projection (L1/TL-LRP), in which the robustness, sparsity, and correlation are jointly considered. Specifically, by introducing the trace Lasso regularization, L1/TL-LRP is adaptive to the correlation structure that benefits from both L2-norm and L1-norm. Besides, an effective procedure based on Alternating Direction Method of Multipliers is proposed for solving L1/TL-LRP. Finally, we conduct extensive experiments on several databases for data classification. The inspiring experimental results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul, A., Chaki, N.: Dimensionality reduction of hyperspectral images using pooling. Pattern Recogn. Image Anal. 29(1), 72–78 (2019). https://doi.org/10.1134/S1054661819010085

    Article  Google Scholar 

  2. De Bodt, C., Mulders, D., Verleysen, M., et al.: Nonlinear dimensionality reduction with missing data using parametric multiple imputations. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1166–1179 (2019)

    Article  MathSciNet  Google Scholar 

  3. Yuan, S., Mao, X., Chen, L.: Multilinear spatial discriminant analysis for dimensionality reduction. Image Process. IEEE Trans. 26(6), 2669–2681 (2017)

    Article  MathSciNet  Google Scholar 

  4. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  5. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Google Scholar 

  6. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  7. He, X.F., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In: The 10th IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1208–1213 (2005)

    Google Scholar 

  8. Zhang, D., He, J., Zhao, Y., Luo, Z., Du, M.: Global plus local: a complete framework for feature extraction and recognition. Pattern Recogn. 47(3), 1433–1442 (2014)

    Article  Google Scholar 

  9. Yang, J., Zhang, D., Yang, J., Niu, B.: Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 650–664 (2007)

    Article  Google Scholar 

  10. Zang, F., Zhang, J., Pan, J.: Face recognition using elasticfaces. Pattern Recogn. 45(11), 3866–3876 (2012)

    Article  Google Scholar 

  11. Yuan, S., Mao, X.: Exponential elastic preserving projections for facial expression recognition. Neurocomputing 275, 711–724 (2018)

    Article  Google Scholar 

  12. Wang, H., Lu, X., Hu, Z., Zheng, W.: Fisher discriminant analysis with L1-norm. IEEE Trans. Cyber. 44(6), 828–842 (2014)

    Article  Google Scholar 

  13. Kwak, N.: Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1672–1680 (2008)

    Article  MathSciNet  Google Scholar 

  14. Nie, F., Huang, H., Ding, C., Luo, D., Wang, H.: Robust principal component analysis with non-greedy L1-norm maximization. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 1433–1438. Barcelona (2011)

    Google Scholar 

  15. Zhong, F., Zhang, J.: Linear discriminant analysis based on L1-norm maximization. IEEE Trans. Image Process. 22(8), 3018–3027 (2013)

    Article  MathSciNet  Google Scholar 

  16. Pang, Y., Yuan, Y.: Outlier-resisting graph embedding. Neurocomputing 73(4), 968–974 (2010)

    Article  Google Scholar 

  17. Zhong, F., Zhang, J., Li, D.: Discriminant locality preserving projections based on L1-norm maximization. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2065–2074 (2014)

    Article  Google Scholar 

  18. Meng, D., Zhao, Q., Xu, Z.: Improve robustness of sparse PCA by L1-norm maximization. Pattern Recogn. 45(1), 487–497 (2012)

    Article  Google Scholar 

  19. Grave, E., Obozinski, G., Bach, F.: Trace Lasso: a trace norm regularization for correlated designs. Adv. Neural Inf. Process. Syst. 2187–2195 (2011)

    Google Scholar 

  20. Lu, G.F., Zou, J., Wang, Y., Wang, Z.: L1-norm-based principal component analysis with adaptive regularization. Pattern Recogn. 60(C), 901–907 (2016)

    Google Scholar 

  21. Wang, J., Lu, C., Wang, M., Li, P., Yan, S., Hu, X.: Robust face recognition via adaptive sparse representation. IEEE Trans. Cybern. 44(12), 2368–2378 (2014)

    Article  Google Scholar 

  22. Lin, Z., Chen, M., Ma, Y.: The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. UIUC Technical Report, UILU-ENG-09–2215 (2009)

    Google Scholar 

  23. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  24. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution. Commun. Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  Google Scholar 

  25. Hinton, G.E.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9(2), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, S., Chen, S., Zhang, F., Huang, W. (2021). L1-Norm and Trace Lasso Based Locality Correlation Projection. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2336-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2335-6

  • Online ISBN: 978-981-16-2336-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics