Skip to main content

A Comprehensive Evaluation Method for Container Auto-Scaling Algorithms on Cloud

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1330))

  • 1222 Accesses

Abstract

Container technology becomes increasingly popular in public cloud platforms. Although many Container Auto-Scaling Algorithms (CASAs) have been proposed recently, there is still a lack of standardized frameworks to evaluate them comprehensively. This paper proposes a comprehensive evaluation method for CASAs. We firstly proposed a set of CASA evaluation metrics considering the requirements of cloud provider and user, and then designed a test data set based on real-world system load traces and 6 workload patterns. Experiments on some representative CASAs are conducted to demonstrate the effectiveness of the proposed evaluation method. Our research can provide cloud providers, operators and users with more comprehensive and systematic information about CASAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah, M., Iqbal, W., Erradi, A.: Unsupervised learning approach for web application auto-decomposition into microservices. J. Syst. Softw. 151, 243–257 (2019)

    Article  Google Scholar 

  2. Bauer, A., Lesch, V., Versluis, L., Ilyushkin, A., Herbst, N., Kounev, S.: Chamulteon: coordinated auto-scaling of micro-services. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 2015–2025. IEEE (2019)

    Google Scholar 

  3. Bauer, E., Adams, R.: Reliability and Availability of Cloud Computing. Wiley, Hoboken (2012)

    Book  Google Scholar 

  4. Benifa, J.B., Dejey, D.: RLPAS: reinforcement learning-based proactive auto-scaler for resource provisioning in cloud environment. Mob. Netw. Appl. 24(4), 1348–1363 (2019). https://doi.org/10.1007/s11036-018-0996-0

    Article  Google Scholar 

  5. Bookinfo. https://github.com/istio/istio/tree/master/samples/bookinfo

  6. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using ARIMA model and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 3(4), 449–458 (2014)

    Article  Google Scholar 

  7. Calzarossa, M.C., Massari, L., Tabash, M.I., Tessera, D.: Cloud autoscaling for HTTP/2 workloads. In: 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), pp. 1–6. IEEE (2017)

    Google Scholar 

  8. Chang, C.C., Yang, S.R., Yeh, E.H., Lin, P., Jeng, J.Y.: A kubernetes-based monitoring platform for dynamic cloud resource provisioning. In: GLOBECOM 2017–2017 IEEE Global Communications Conference, pp. 1–6. IEEE (2017)

    Google Scholar 

  9. Dutreilh, X., Moreau, A., Malenfant, J., Rivierre, N., Truck, I.: From data center resource allocation to control theory and back. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 410–417. IEEE (2010)

    Google Scholar 

  10. Feng, D., Wu, Z., Zhang, Z., Fu, J.: On the conceptualization of elastic service evaluation in cloud computing. J. Inf. Technol. Res. (JITR) 12(1), 36–48 (2019)

    Article  Google Scholar 

  11. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Future Gener. Comput. Syst. 29(4), 1012–1023 (2013)

    Article  Google Scholar 

  12. Ghobaei-Arani, M., Souri, A., Baker, T., Hussien, A.: ControCity: an autonomous approach for controlling elasticity using buffer management in cloud computing environment. IEEE Access 7, 106912–106924 (2019)

    Article  Google Scholar 

  13. Herbst, N., et al.: Ready for rain? A view from SPEC research on the future of cloud metrics. arXiv preprint arXiv:1604.03470 (2016)

  14. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it is, and what it is not. In: Proceedings of the 10th International Conference on Autonomic Computing, ICAC 2013, pp. 23–27 (2013)

    Google Scholar 

  15. Herbst, N.R., Kounev, S., Weber, A., Groenda, H.: BUNGEE: an elasticity benchmark for self-adaptive IaaS cloud environments. In: 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 46–56. IEEE (2015)

    Google Scholar 

  16. Horovitz, S., Arian, Y.: Efficient cloud auto-scaling with SLA objective using Q-learning. In: 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 85–92. IEEE (2018)

    Google Scholar 

  17. Iqbal, W., Erradi, A., Mahmood, A.: Dynamic workload patterns prediction for proactive auto-scaling of web applications. J. Netw. Comput. Appl. 124, 94–107 (2018)

    Article  Google Scholar 

  18. ISO: IEC 9126 software engineering—product quality—part 1: Quality model. Geneva: International Organization for Standardization (2001)

    Google Scholar 

  19. Kan, C.: DoCloud: an elastic cloud platform for web applications based on docker. In: 2016 18th International Conference on Advanced Communication Technology (ICACT), pp. 478–483. IEEE (2016)

    Google Scholar 

  20. Klinaku, F., Frank, M., Becker, S.: Caus: an elasticity controller for a containerized microservice. In: Companion of the 2018 ACM/SPEC International Conference on Performance Engineering, pp. 93–98 (2018)

    Google Scholar 

  21. Lolos, K., Konstantinou, I., Kantere, V., Koziris, N.: Elastic management of cloud applications using adaptive reinforcement learning. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 203–212. IEEE (2017)

    Google Scholar 

  22. Saravanan, K., Kantham, M.L.: An enhanced QoS architecture based framework for ranking of cloud services. Int. J. Eng. Trends Technol. (IJETT) 4(4), 1022–1031 (2013)

    Google Scholar 

  23. Schulz, F.: Elasticity in service level agreements. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 4092–4097. IEEE (2013)

    Google Scholar 

  24. Siegel, J., Perdue, J.: Cloud services measures for global use: the service measurement index (SMI). In: 2012 Annual SRII Global Conference, pp. 411–415. IEEE (2012)

    Google Scholar 

  25. Tran, D., Tran, N., Nguyen, G., Nguyen, B.M.: A proactive cloud scaling model based on fuzzy time series and SLA awareness. Proc. Comput. Sci. 108, 365–374 (2017)

    Article  Google Scholar 

  26. Tripathi, A., Pathak, I., Vidyarthi, D.P.: Integration of analytic network process with service measurement index framework for cloud service provider selection. Concurr. Comput.: Pract. Exp. 29(12), e4144 (2017)

    Article  Google Scholar 

  27. Upadhyay, N.: Managing cloud service evaluation and selection. Proc. Comput. Sci. 122, 1061–1068 (2017)

    Article  Google Scholar 

  28. Wiki Source. https://dumps.wikimedia.org/other/pagecounts-raw/2016/

  29. Zheng, T., Zheng, X., Zhang, Y., Deng, Y., Dong, E., Zhang, R., Liu, X.: SmartVM: a SLA-aware microservice deployment framework. World Wide Web 22(1), 275–293 (2019). https://doi.org/10.1007/s11280-018-0562-5

    Article  Google Scholar 

Download references

Acknowledgments

This work is Supported by the National Key Research and Development Program of China under Grant No. 2017YFB0202201; the National Natural Science Foundation of China (NSFC) under Grant No. 61972427; the NSFC-Guangdong Joint Fund Project under Grant No. U1911205; the Research Foundation of Science and Technology Plan Project in Guangdong Province under Grant No. 2020A0505100030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, J., Zhang, S., Pan, M., Yu, Y. (2021). A Comprehensive Evaluation Method for Container Auto-Scaling Algorithms on Cloud. In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2020. Communications in Computer and Information Science, vol 1330. Springer, Singapore. https://doi.org/10.1007/978-981-16-2540-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2540-4_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2539-8

  • Online ISBN: 978-981-16-2540-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics