Skip to main content

Robust Bayesian Changepoint Analysis in the Presence of Outliers

  • Conference paper
  • First Online:
Intelligent Decision Technologies

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 238))

  • 604 Accesses

Abstract

We introduce a new robust Bayesian change-point analysis in the presence of outliers. We employ an idea of general posterior based on density power divergence combined with horseshoe prior for differences of underlying signals. A posterior computation algorithm is proposed using Markov chain Monte Carlo. The proposed method is demonstrated through simulation and real data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation by minimising a density power divergence. Biometrika. 85, 549–559 (1998). https://doi.org/10.1093/biomet/85.3.549

  2. Bissiri, P.G., Holmes, C.C., Walker, S.G.: A general framework for updating belief distributions. J. Roy. Stati. Soci. Ser. B. 78, 1103. (2016). https://doi.org/10.1111/rssb.12158

  3. Boustati, A., Akyildiz, O.D., Damoulas, T., Johansen, A.M.: Generalised Bayesian filtering via sequential Monte Carlo. In: 34th Conference on Neural Information Processing Systems (NeurIPS 2020). https://papers.nips.cc/paper/2020/hash/04ecb1fa28506ccb6f72b12c0245ddbc-Abstract.html

  4. Caron, F., Doucet, A., Gottardo, R.: On-line changepoint detection and parameter estimation with application to genomic data. Stat. Comput. 22, 579–595 (2012). https://doi.org/10.1007/s11222-011-9248-x

  5. Carvalho, C.M., Polson, N.G., Scott, J.G.: The horseshoe estimator for sparse signals. Biometrika 97, 465–480 (2010). https://doi.org/10.1093/biomet/asq017

  6. Faulkner, J.R., Minin, V.N.: Locally Adaptive smoothing with Markov random fields and shrinkage priors. Bayesian Anal. 13, 225–252 (2018). https://projecteuclid.org/euclid.ba/1487905413

  7. Feanhead, P.: Exact and efficient Bayesian inference for multiple changepoint problems Stat. Comput. 16, 203–213 (2006). https://doi.org/10.1007/s11222-006-8450-8

  8. Fearnhead, P., Rigaill, G.: Changepoint detection in the presence of outliers. J. Am. Stat. Assoc. 114, 169–183 (2019). https://doi.org/10.1080/01621459.2017.1385466

  9. Hashimoto, S., Sugasawa, S.: Robust Bayesian regression with synthetic posterior distributions. Entropy 22, 661 (2020). https://doi.org/10.3390/e22060661

  10. Holmes, C., Walker, S.: Assigning a value to a power likelihood in a general Bayesian model. Biometrika 104, 497–503 (2017). https://doi.org/10.1093/biomet/asx010

  11. Jewson, J., Smith, J.Q., Holmes, C.: Principles of Bayesian inference using general divergence criteria. Entropy 20, 442 (2018). https://doi.org/10.3390/e20060442

  12. Kikkick, R., Eckley, I.E., Jonathan, P.: Detection of changes in variance of oceanographic time-series using changepoint analysis. Ocean Eng. 37, 1120–1126 (2010). https://doi.org/10.1016/j.oceaneng.2010.04.009

  13. Kim, C. J., Morley, J. C. and Nelson, C. R.: The structural break in the equity premium. J. Bus. Econ. Stat. 23, 181–191 (2005). https://doi.org/10.1198/073500104000000352

  14. Kowal, D.R., Matteson, D.S., Ruppert, D.: Dynamic shrinkage process. J. Roy. Stat. Soc. Ser. B. 81, 781–804 (2019). https://doi.org/10.1111/rssb.12325

  15. ÓRuanaidh, J.J.K., Fitzgerald, W.J.: Numerical Bayesian Methods Applied to Signal Processing. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0717-7

  16. Reeves, J., Chen, J., Wang, X.L., Lund, R., Lu, Q.Q.: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007). https://doi.org/10.1175/JAM2493.1

  17. Sugasawa, S.: Robust empirical Bayes small area estimation with density power divergence. Biometrika 107, 467–480 (2020). https://doi.org/10.1093/biomet/asz075

Download references

Acknowledgements

The authors would like to thank the referees for the careful reading of the paper, and the valuable suggestions and comments. This work is partially supported by Japan Society for Promotion of Science (KAKENHI) grant numbers 18K12757 and 17K14233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sugasawa, S., Hashimoto, S. (2021). Robust Bayesian Changepoint Analysis in the Presence of Outliers. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 238. Springer, Singapore. https://doi.org/10.1007/978-981-16-2765-1_39

Download citation

Publish with us

Policies and ethics